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Abstract

Amid the current syndemic of obesity and climate change, little is known about the effect

of extreme temperatures on dietary behaviour. Using exogenous daily variations in weather

and a nationally representative consumer panel in the U.S., we find that extreme heat in-

creases the volume purchased of sugary drinks, with persistent impacts even after accounting

for inter-temporal purchase shifts. We explore heterogeneous effects and a range of poten-

tial drivers, including changes in shopping habits, inter-channel substitutions, retailers’ price

adjustments, and psychological biases. Results reveal higher impacts among the most vul-

nerable households and no evidence of long-run adaptation by historical heat exposure. We

combine our estimates with output from climate models for 2080-2099. Our projections in-

dicate that climate change may increase sugary drink purchases.
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1 Introduction

The United States (U.S.) is the first-most sugar-loving nation in the world. The average per-

son consumes more than twice the World Health Organization’s recommended daily sugar

intake.1,2 Two out of five American adults are obese, representing the highest prevalence

among OECD countries (OECD, 2017). Elevated body weight is associated with approxi-

mately half a million excess deaths per year in the U.S. and the annual cost of obesity to

the healthcare system is estimated at $173 billion (Ward et al., 2022).3 Meanwhile, the

country is increasingly facing the impacts of climate change. As in most of the world, ex-

treme weather events, particularly extreme temperatures, are becoming more frequent and

intense.4 Previous studies have highlighted how extreme temperatures negatively impact

economic productivity (Deryugina and Hsiang, 2014; Burke et al., 2015b), labour supply

(Jessoe et al., 2018; Somanathan et al., 2021), education and learning (Park et al., 2020;

Zhang et al., 2023), aggregate household consumption (Lee and Zheng, 2023; Lai et al.,

2022), direct health outcomes (Deschênes and Greenstone, 2011; Barreca et al., 2016), phys-

ical activity (Obradovich and Fowler, 2017), as well as agricultural outcomes (Costinot et

al., 2016; Burke and Emerick, 2016). However, little is known about how they affect dietary

patterns.

Americans are among the highest consumers of sugary drinks globally with the average

adult consuming 4.9 (8-oz, 227ml) servings per week (approximately equivalent to 65 kcal per

day) (Lara-Castor et al., 2023). These drinks represent the largest source of added sugar and

contribute to weight gain and chronic diseases (Ricciuto et al., 2021; Malik and Hu, 2022).

1Based on Euromonitor Passport data for 54 countries. Source: Washington Post, Where people around
the world eat the most sugar and fat , 2015.

2The World Health Organization’s daily recommended sugar intake is 10% of energy intake or approxi-
mately 50g for someone of normal weight with a daily energy intake of 2,000 kcal.

3Source: Centres for Diseases Control and Prevention, Overweight & Obesity, Why It Matters (Accessed
30 April 2024).

4Source: U.S. Environmental Protection Agency, Climate Change Indicators in the United States (Ac-
cessed 24 April 2024).
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From a physiological standpoint, while they contain water, sweetened soft drinks should not

be consumed to fulfil the body’s increased hydration needs in hot temperatures. High sugar

intake may exacerbate dehydration through increased thirst and urine production as the body

tries to excrete excess sugar (Rolls et al., 1990; Garćıa-Arroyo et al., 2016).5 Many sweetened

soft drinks also lack essential electrolytes like potassium. Their overconsumption may disrupt

the body’s electrolyte balance and affect its ability to retain water.6 Furthermore, sugary

drinks represent an empty source of calories, providing little to no nutritional value to support

the body’s sustenance. Increases in energy intake not compensated by physical activity may

lead to net increases in body weight. Understanding how extreme temperatures may affect

beverage purchasing patterns and identifying potential drivers is essential for supporting

policymaking to promote healthier diets under climate change.

This paper provides the first empirical evidence of the impact of extreme temperatures

on the dietary shopping habits of Americans using detailed longitudinal grocery trip data.

We match soft drink purchases from a nationally representative consumer panel with zip

code-level daily meteorological information, supplemented with other administrative datasets

capturing local characteristics. We investigate the causal contemporaneous effect of temper-

atures on purchases by exploiting exogenous weather variations through panel data regres-

sions including a rich set of location- and time-specific as well as individual household fixed

effects. Our comprehensive dataset is ideal as it allows for analysing the effect within indi-

vidual households over 16 years with a daily resolution of both weather and purchasing data

and enables the exploration of heterogeneity across demographic groups and locations. We

test for inter-temporal purchase shifts and explore potential drivers, including changes in

shopping habits, inter-channel substitutions, retail price adjustments, and psychological bi-

ases. Finally, we examine the mitigating role of long-run adaptation to climate by historical

5This process is referred to as osmotic diuresis. High sugar intake also stimulates the release of insulin,
which may enhance the reabsorption of sodium in the kidneys, further contributing to dehydration.

6Most sweetened soft drinks also often contain caffeine, which in high quantity may lead to dehydration.
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exposure and simulate consumption changes across various climate change scenarios.

Our analysis yields several important insights. First, we find that the purchased volume

of soft drinks increases non-linearly with temperature, exhibiting statistically significant pos-

itive effects above 80◦ Fahrenheit (F) (≈ 27◦C in the Celsius scale). Colder temperatures do

not affect soft drink purchases. On average, a day with a maximum temperature above 95◦F

(35◦C) increases the volume purchased of sugary drinks in the month by 0.34% compared

to a regular day with 65-70◦F (≈ 18-21◦C). Monthly bottled water purchases also increase

(+0.75%) following a day with a maximum temperature above 95◦F. Inter-temporal substi-

tutions do not offset these immediate effects. However, while the contemporaneous effect

of extreme heat is positive on diet drink purchases, it is compensated by decreases in the

following months. Results are robust to various specifications.

Second, we investigate heterogeneity and the role of potential modifiers of the effect. The

relative increase in sugary drink purchases following extreme heat is similar across income

group levels. Urban households drive the effect, likely due to their closer proximity to stores

and higher exposure through potential heat island effects. The effect is higher for households

with at least one member working in an outdoor occupation, likely due to higher exposure,

and households with at least one obese adult member, likely due to higher vulnerability to

heat stress.

Third, in line with Lee and Zheng (2023), we find that extreme heat days only have a

minor negative impact on the likelihood of shopping trips. The positive effect of extreme

heat on sugary drink volume purchased is driven by trips to convenience stores for rural

households. These stores tend to be closer to household locations and display more unhealthy

beverage options. Assessing heterogeneous effects by the local density of food and drink

establishments, we rule out heat-induced inter-channel substitutions from the on-trade sector

(e.g., bars and restaurants) to grocery stores.

Fourth, we assess whether retailers are driving the effect through price adjustments during

extreme heat. Using a nationally representative retail scanner dataset, we build monthly
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store-level price indices across universal product codes (UPC) by beverage type and find

no evidence of retail price adjustment for sugary drinks and bottled water and only limited

adjustments for diet drinks (-0.009%), consistent with Gagnon and López-Salido (2020) and

Lee and Zheng (2023).

Fifth, Busse et al. (2015) has pointed towards projection bias and salience as psychological

channels to explain how consumers are overly influenced by their emotional state and the

weather at the time of purchase. Our results do not support these mechanisms to explain

the effect of extreme heat on sugary drink purchases. Nevertheless, we find some evidence

of a mood effect with the increase in sugary drink purchases being higher for extreme heat

days without rain. Furthermore, present bias, or more generally the lack of self-control,

may participate in explaining the departure from the physiological channel predictions (i.e.,

predicted increase in water intake, but no increase in sugary drink intake) and the irrational

inter-temporal trade-offs triggered by extreme heat.

Lastly, we explore the mitigating role of higher historical exposure to extreme heat. In

line with Roth Tran (2023) and Addoum et al. (2020), we find that sugary drink purchases

from households that have historically experienced more extreme heat events are not less

sensitive than others to contemporaneous extreme heat shocks. However, we find evidence

of a significant mitigating effect for bottled water purchases.

This paper contributes to the literature in several ways. First, it relates to recent works

that have studied weather effects on purchasing decisions and retail sales (He et al., 2022;

Liao, 2020; Lee and Zheng, 2023; Roth Tran, 2023; Lai et al., 2022),7 including the strand

investigating psychological channels (Busse et al., 2015; Conlin et al., 2007). Second, the

literature on the impact of climate change on diets has mostly focused on agricultural pro-

duction, highlighting the negative direct impact of extreme temperatures on crop yield and

7Until recently and the advent of granular longitudinal shopping and transaction data, the literature
had been focused on the impact of weather variations on economic productivity rather than consumption
(Graff Zivin and Neidell, 2014; Burke et al., 2015b; Deryugina and Hsiang, 2017), except for studies on
energy consumption (Auffhammer and Mansur, 2014).
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food security (Wheeler and von Braun, 2013; Costinot et al., 2016). In this paper, we show

that climate change also impacts dietary behaviour from the demand side. Third, while as-

sociations have been found between hot temperatures and highly processed food purchases

as well as micronutrient deficiency (López-Olmedo et al., 2021; McLaughlin et al., 2023),

our study provides the first evidence of a causal effect of extreme temperatures on dietary

behaviour using micro-level longitudinal shopping data. Fourth, while the health economics

literature has demonstrated the direct impact of climate change on morbidity and mortality

(Campbell et al., 2018; Deschênes and Greenstone, 2011; White, 2017; Liao et al., 2023),

we evidence a potential negative indirect health impact through unhealthy dietary choices.

Finally, we contribute to a large body of work investigating adaptation to climate, including

on household spending and energy consumption (Lai et al., 2022; Auffhammer, 2022), as

well as labour (Behrer and Park, 2017; Jessoe et al., 2018), agricultural (Burke and Emerick,

2016; Costinot et al., 2016), and health outcomes (Barreca et al., 2016; Carleton et al., 2022).

While the average American currently experiences 13 days with a maximum temperature

over 95◦F per year, this number could increase to 27-50 days by mid-century and to 45-96

days each year by the end of the century, with significant regional variations.8 Using our

temperature effect estimates and downscaled daily climate predictions under two greenhouse

gas emission scenarios validated by the Intergovernmental Panel on Climate Change (IPCC),

we estimate that climate change is expected to stimulate sugary drink purchases by 0.73%

to 1.44% by the end of this century, with likely negative implications for public health. The

effect is higher in hotter climate regions with no evidence of long-run adaptation based on

historical exposure. On the other hand, we project lower changes in bottled water purchases

once adaptation is accounted for. Amid the current syndemic of obesity and climate change

(Swinburn et al., 2019), our findings can inform policymaking to promote healthier diets

under climate change, particularly in settings grappling with an obesity epidemic.

8Based on various greenhouse gas emission scenarios. Source: Vox, Here’s how 95◦F days could become
more common in your lifetime, 2014.
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This paper is divided as follows. Section 2 details the data sources and provide summary

statistics. Section 3 describes the empirical strategy. Section 4 presents results and explores

potential drivers and modifiers of the effect. Section 5 investigates the mitigating role of

historical exposure. Section 6 presents our estimates of the future projected impact of

climate change on soft drink purchases. Section 7 discusses the results and limitations and

concludes.

2 Data and variable definitions

Our analysis is based on purchase data for 2004-2019 from NielsenIQ Consumer Panel; a

nationally representative panel recording all their purchases intended for personal, in-home

use, using an in-home scanner or mobile app. The dataset tracks household purchase data at

the UPC level for food and non-food packaged grocery items from any outlet. It also includes

household zip code location and demographic information such as income, the number of

individuals living in the household, their head employment status, age, and race. Our

outcome variable is the monthly household purchases per adult equivalent unit,9 measured

in millilitres (ml), for the following soft drink groups: 1) regular carbonated soft drink (CSD)

which contains sugar; 2) fruit juice & drink; 3) diet CSD, which contains non-caloric artificial

sweeteners; and 4) bottled water (non-sweetened). As a convention, sugary drinks refer to

regular CSD and fruit juice & drink. Implicitly, we assume that the purchased drinks are

shared equally between adults and based on the adult equivalent scale for adolescents and

children within all households.

9We use the following adult equivalent unit scale: 0.77 for children < 5 years old; 0.80 for children 6-12
years old, 0.88 for 13-18 years old; Source: Food and Agriculture Organization of the United Nations, Human
Energy Requirements, Report of a Joint FAO/WHO/UNU Expert Consultation: Rome, 17-24 October 2001.
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Our analysis is based on a sample consisting exclusively of households that have purchased

at least one soft drink annually (of any of the four soft drink types included in this analysis).

We exclude households that change zip codes from our analysis as the exact date of their move

during the year is unknown, given that panellist characteristics are only updated annually.

Zip codes containing only one household in the panel are dropped. Additionally, we clean

the data by filtering out outliers. This includes dropping household-years with less than 12

purchase trips (of any item, including non-beverages) and those with soft drink purchases

higher than 600 litres (158.5 gallons) per adult equivalent unit for any given month.10 Finally,

we exclude households with interrupted presence in the sample but keep households whose

total length in the panel is less than 16 years (the maximum length). The final sample covers

purchase data from February 2004 to November 2019,11 and comprises 5,834,433 household-

month observations from 133,312 unique households in 13,522 zip codes across the contiguous

U.S.12 Table B1 presents household demographic characteristics.

We match the purchase data with the U.S. NOAA Global Historical Climatology Network

meteorological daily information. Weather stations within a maximum radius of 200 km to

each household’s zip code centroid geolocation are considered (Barreca et al., 2016).13 Zip

code-level daily inverse-distance weighted average of the five closest weather stations are

computed for maximum temperature in Fahrenheit (F), precipitation in millimeters (mm)

(including both rainfall and snow melt), snowfall in mm, and average wind speed in meters

10600 litres (158.5 gallons) corresponds to 20 litres (5.3 gallons) per adult equivalent unit per day over 30
days. Kidneys can only remove 0.8 to 1 litre (27 to 34 ounces) per hour, so the maximum liquid quantity
human kidneys can process per day is 19 to 24 litres (5 to 6.3 gallons). Source: BBC Science focus, Is there
a maximum amount of liquid a human can drink in a day? (Accessed 30 April 2024).

11January of the first year and December of the last year are dropped as purchase data are missing for
some days.

12Including the 48 contiguous states (all U.S. states except Alaska and Hawaii) and the District of
Columbia.

13We drop weather station-years with more than three missing or quality-flagged observations.
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per second (m/s) (Liao et al., 2023).14,15

Given that NielsenIQ Consumer Panel does not consistently capture retailer information

for each good scanned at home, we use NielsenIQ Retail Scanner dataset to construct monthly

price indices at the store level from January 2006 to December 2019. The dataset provides

weekly pricing and sales from over 90 participating retail chains across all U.S. markets at

the UPC level covering more than half the total sales volume of U.S. grocery, convenience

and drug stores. It also includes retail channel type information and location (first 3-digit

zip codes). We use the latter to match the data with daily weather information from the

U.S. NOAA Global Historical Climatology Network at the county level, following the same

inverse-distance weighted average strategy described earlier.

Table 1 displays the monthly purchased volume for the four beverage groups. The average

American household in our sample purchases 3,303 ml of bottled water, 3,081 ml of regular

CSD, 2,731 ml of diet CSD, and 2,328 ml of fruit juice/drink per adult equivalent unit per

month. Figure B1 illustrates the degree of seasonality in purchases with peaks in the spring

and the summer months. While the volume purchased decreases in the autumn months for

all beverage types, it increases for regular CSD to reach levels close to the summer months

in December.

Table 2 presents descriptive weather statistics. The average daily maximum temperature

among the sample zip codes for 2004-2019 is 67.6◦F. Figure 1 depicts the average distribution

of daily maximum temperature across household-month observations, categorized into 16

bins ranging from below 25 degrees Fahrenheit (◦F) (≈ −4 degrees Celsius, ◦C) to above 95◦F

(35◦C). Days with a maximum temperature above 95◦F or below 25◦F are rare, averaging

1.1 and 0.6 days per month, respectively. Only 61.5% and 54.9% of household-years have

experienced at least one such day, respectively (Figure B2). Table B2 and Figure B3 present

14Figure A1 displays a histogram of the distance between zip code centroids and the fifth closest station,
i.e., the furthest station included in our analysis for each zip code. The furthest weather stations remain in
a close radius to zip code centroids as the median distance is 32.8km, and the 95th percentile is 51.1km.

15In robustness analyses, we also consider daily minimum temperature.
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the distribution of daily maximum temperature among zip codes in more detail. Figure B4

highlights the strong seasonality in temperatures. The number of extreme temperature days

has shifted over time, which is captured in Figure B5; it depicts the observed changes in

maximum temperatures across the sample time frame by comparing the total number of

days above 90◦F and below 30◦F in 2004 and 2019. The majority of points lie above the

45-degree line for days with a maximum temperature above 90◦F, underscoring the trend

of rising temperatures in the U.S. even over a relatively short period. Finally, Figure B6

displays the distribution of the monthly average number of days within bins of precipitations,

snowfall, and average wind speed among the sample. On average, households only experience

precipitations half of the days. Snowfall is rare, less than three days per month on average,

and households experience an average wind speed of over 6 m/s (≈13.4 miles per hour) only

two days per month on average.

3 Main empirical strategy

We conduct multi-way fixed effects regressions at the household level, exploiting the exo-

geneity of weather shocks after controlling for seasonality and location (idiosyncrasy and

random variation of weather) (Dell et al., 2014) (Equation 1):

Vh,z,y,m = α +
∑
i

βiTi,z,y,m +
∑
k

∑
j

µk,jWk,j,z,y,m + θZh,y + σz,m + γy,q + λh + εh,z,y,m (1)

where Vh,z,y,m represents the volume purchased per adult equivalent unit during month

m of year y by household h in zip code z. Ti,z,y,m are a series of 16 bins equal to the number

of days in a zip code-month for which the daily maximum temperature falls into bin i with
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i ∈ {≤ 25◦F, (25, 30], (30, 35], (35, 40], (40, 45], (45, 50], (50, 55], (55, 60], (60, 65], (65, 70),

[70, 75), [75, 80), [80, 85), [85, 90), [90, 95), ≥ 95◦F}.16 As other weather conditions may

affect purchasing patterns, we similarly define Wk,j,z,y,m as three series of regressors equal

to the number of days in a zip code-month belonging to bin j including precipitations with

j ∈ {0mm, (0, 2.5], (2.5, 5], (5, 7.5], (7.5, 10], ≥ 10mm}; snowfall with j ∈ {0mm, (0, 1], (1, 2],

(2, 3], (3, 4], ≥ 4mm}; and average wind speed with j ∈ {(0, 2.5], (2.5, 3], (3, 3.5], (3.5, 4.5],

(4.5, 6], ≥ 6m/s}. Zh,y is household income, a time-varying household characteristic that

might affect purchases.17 σz,m represent zip code × month-of-year fixed effects absorbing the

average seasonal location-specific variation in weather and soft drink purchases, including

holidays, as well as unobserved location characteristics. γy,q are year × quarter-of-year fixed

effects controlling for macro level shocks. Finally, λh are household fixed effects absorbing

unobserved time-invariant household characteristics that may affect soft drink purchases.

Equation 1 allows a flexible relationship between temperature and soft drink purchases.

The purchased volume includes a significant number of zeros, even after aggregating

purchases to the monthly level. Thus, we estimate the expectation of quantity purchased

Vi,t by household i at time t conditional on the predictor variables Xi,t, via Poisson pseudo-

maximum likelihood regressions (Wooldridge, 2010),18 defined as:

16Following the approach in Graff Zivin and Neidell (2014). In the Celsius scale, this is approximately
equivalent to {≤ −4◦C, (−4,−1], (−1, 2], (2, 4], (4, 7], (7, 10], (10, 13], (13, 16], (16, 18], (18, 21), [21, 24),
[24, 27), [27, 29), [29, 32), [32, 35), ≥ 35◦C}.

17In 2015 U.S. dollar, adjusted using World Bank, Consumer Price Index (Accessed 30 April 2024). As
it may be endogenous, robustness results also provide an alternative specification without controlling for
income.

18The presence of many structural zero values can lead to biased ordinary least squares (OLS) estimates
and inflated standard errors. Instead, Poisson pseudo-maximum likelihood models the conditional mean
of the response variable. This approach is robust to distributional misspecification and is not restricted
to count data (Wooldridge, 2010). It is also robust to overdispersion as we use cluster-robust standard
errors. We specifically use the iteratively reweighted least-squares algorithm developed by Correia et al.
(2019) for Poisson regression models with multiple high-dimensional fixed effects. We do not have singleton
observations in our sample as we drop zip codes with only one household. However, separated observations
stem from beverage type-specific regressions as the sample includes all household-years that make at least
one purchase of any soft drink and some households may never consume a particular type of soft drink.
Separated observations, which are dropped from the estimation sample to avoid problems of perfect fit in
likelihood estimations (Correia et al., 2019), explain the differences in sample sizes across the beverage-
specific regressions.
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E[Vi,t|Xi,t] = exp(Xi,tβ). (2)

The βi coefficients can be interpreted as semi-elasticities that capture the contemporane-

ous effect of an additional day that falls within maximum temperature bin Ti on the volume

purchased in the month relative to an average temperature day. The reference bin, 65-70◦F

(≈ 18-21◦C) captures the annual average maximum temperature across all sample zip codes

(Table 2). All regressions are weighted using NielsenIQ household projection factors, en-

abling the results to be representative at the national level. We use robust standard errors

clustered at the zip code level to allow for correlation within zip codes over time.

4 Results

4.1 Main

Results show that the volume purchased of soft drinks rises non-linearly with temperatures.

It exhibits statistical significance for maximum temperatures above 80◦F and peaks above

95◦F (except for diet CSD which peaks at [90, 95)F). Colder days have non-statistically

significant effects for all soft drink types with negative effects on the purchases of diet CSD

and bottled water for maximum temperatures below 40◦F (Figure 2). Swapping an average

day with a maximum temperature between 65-70◦F for a day with a maximum temperature

above 95◦F increases the average purchased volume of sugary drinks in the month by 0.34% or

20.2 ml (0.38% for fruit juice/drink and 0.33% for regular CSD). These results are driven by

an intensive margin effect with no effect of temperatures on the extensive margin (Table 3).

Extreme heat also leads to higher purchases of bottled water with a day above 95◦F increasing

the total volume purchased in the month by 0.75%. Diet CSD appear less sensitive to
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extreme heat than their sugary equivalent with a day above 95◦F increasing the total volume

purchased in the month by 0.22% (Table C1).

These findings are robust to the use of daily minimum temperature to define temperature

bins (Figure C1). While the fixed effects included in our main specification are key to

controlling for potential confounders, their combination may capture some of the variation

needed to identify the full impact of temperatures on soft drink purchases. We show the

robustness of our findings to other levels of time and location fixed effects: (1) county ×

month-of-the-year, (2) state × month-of-the-year, and (3) household × year fixed effects

(excluding time-varying household income as a control) in Table C2. Finally, an important

consideration is that weather could be correlated across all zip codes during a given month.

This may induce some correlation in the error term across locations within a given time

period. To alleviate this concern, we show that the significance of our results is robust to

two-way clustering on both zip codes and month-of-the-year (Table C3).

4.2 Inter-temporal shifts

Temperature effects could be the results of short-term inter-temporal substitutions in pur-

chases, shifting the period when consumers buy but potentially not the total volume they

buy over a longer period. We use a distributed lag model (Equation 3) and test the null

hypothesis that the sum of the two-month lag coefficients is equal to the negative of the

respective contemporaneous period coefficient. Similarly, we test for anticipatory effects

including a one-month lead.

Vh,z,y,m = α +
2∑

t=−1

∑
i

βi,m−tTi,z,y,m−t +
∑
k

∑
j

µk,jWk,j,z,y,m

+θZh,y + σz,m + γy,q + λh + εh,z,y,m

(3)

To efficiently examine the impacts of both high and low temperatures, we now transition
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to employing five daily maximum temperature bins: ≤ 30◦F, (30, 40], (40, 80), [80, 90), and

≥ 90◦F, with 40-80◦F serving as the reference bin. Figure 3 plots the estimated coefficients for

Equation 3 for days with a maximum temperature below 30◦F and above 90◦F as cumulative

effects for sugary drinks, including a one-month lead and two-month lags. The effect on

volume purchased in the following months is small but positive for days above 90◦F. The

cumulative effect over three months is non-statistically significant for days below 30◦F. Our

test results rule out both harvesting and anticipatory effects for extreme heat for sugary

drinks as well as all other beverage types, except diet CSD. On the contrary, we do not

rule out the null hypothesis of harvesting for all beverage types for extreme cold. We only

reject the null hypothesis of equality between the lead coefficient and the negative of the

contemporaneous effect for extreme cold for bottled water (Table D1 and Table D2).

Figure D1 displays the cumulative effect by beverage type for days with a maximum

temperature below 30◦F and above 90◦F. Combined with results from Section 4.1, we find

that extreme cold days have a limited impact on the volume purchased. While a day with

a maximum temperature below 30◦F has a statistically significant negative impact on the

volume purchased of bottled water, purchases increase in the following month such that the

cumulative effect is negative but non-statistically significant. The positive effect of days with

a maximum temperature above 90◦F on the volume purchased of regular CSD and bottled

water is not compensated over time and only slightly compensated for fruit juice and drink

after two months. On the other hand, the positive contemporaneous effect for diet CSD is

fully compensated over time such that the cumulative effect is non-statistically significant,

evidencing harvesting. This result also holds for the highest consumers of diet CSD and is

not driven by substitutions to regular CSD (Figure D2).

4.3 Heterogeneity and potential modifiers

We explore heterogeneity by household annual income as it may be correlated with asset

ownership such as air conditioning (AC) or owning a vehicle, which may mitigate heat
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exposure at home and during transport to grocery stores. Results show no difference in the

relative effect of temperatures on sugary drink purchases by annual household income level

(Figure 4). In the U.S., the consumption of sugary drinks is higher among lower-income

households (Allcott et al., 2019a). As for heterogeneous effects by income level, we find no

differential effects of extreme heat on sugary drink purchases by intensity of consumption.

However, these effects are expressed in relative terms compared to mild temperatures through

Poisson pseudo-maximum likelihood. Therefore, higher consumers increase their absolute

sugary drink purchase levels significantly more than less intensive consumers as a response

to extreme heat, given their higher purchase levels under mild temperatures. For bottled

water, we find that purchases from lower-intensity consumers are more sensitive to extreme

heat (Figure E1). Higher-intensity bottled water consumers may be households with strong

preferences for bottled water above tap water or living in areas where tap water is perceived

of lower quality. Their consumption may thus be more structural and less sensitive to

temperature variations.

In the U.S., poverty rates are higher in rural areas across all ethnic groups.19 AC owner-

ship is lower in rural areas and rural households tend to cover longer distances to shop and

thus may be more exposed to outdoor temperature immediately before shopping (Romitti et

al., 2022; Ver Ploeg et al., 2012). However, Figure 4 shows that the positive effect of extreme

heat on sugary drink volume purchased is driven by urban households. These households

are likely to have easier access to stores. We do not find differential impacts by area for

bottled water as both rural and urban households react equally positively to extreme heat

(in relative terms) (Figure E1).

We also investigate heterogeneity by hot, mild, and cold climate zip codes, categorized

based on terciles of the average maximum temperature over the 30-year period from 1974

to 2003. Figure 4 highlights minor differences in the effect of extreme heat on sugary drink

19Source: U.S. Department of Agriculture, Economic Research Service, Data show U.S. poverty rates in
2019 higher in rural areas than in urban for racial/ethnic groups, 2021.
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purchases by climate region, with the demand for households in historically colder zip codes

being moderately more sensitive. This suggests that consumers in historically warmer areas

may be slightly better adapted to cope with hot temperatures. Naturally, we find more

uncertainty in the results for extreme cold temperatures in historically hot zip codes and

vice-versa, with higher confidence intervals, due to lower exposure. We find similar results

for bottled water (Figure E1).

Further, we explore factors that may moderate or exacerbate the positive effect of extreme

heat on sugary drink purchases. Specifically, we evaluate the effect of at least one of the

household heads being employed in an outdoor occupation,20 at least one of the adult house-

hold members being obese, as well as households having at least one child and households

using AC. Practically, we interact the modifier variable (Modh,y) with the set of temperature

bins in our main model specification.

Vh,z,y,m = α +
∑
i

βiTi,z,y,m +
∑
i

ρiTi,z,y,m ×Modh,y + πModh,y

+
∑
k

∑
j

µk,jWk,j,z,y,m + θZh,y + σz,m + γy,q + λh + εh,z,y,m

(4)

where Modh,y represent dummies respectively equal to zero for household-years with no

head employed in an outdoor occupation, with no obese adult member, with no children, and

with no AC use. These dummies are equal to one for household-years with at least one head

employed in an outdoor occupation, with at least one obese adult member, with at least

one child, and with AC use, respectively. Adult obesity is defined based on a body mass

index (BMI) above 30, following international standards. Information on household mem-

20This includes the following occupation categories as listed in NielsenIQ Consumer Panel: foreman,
carpenter, electrician, painter, plumber, exterminator, construction or road machine operator, mechanic,
repairman, non-medical technician, utility lineman or serviceman, building inspector, factory machine oper-
ator, delivery man, driver for bus/taxi/truck, factory worker, transportation worker, member of the armed
forces, farmer, construction worker, shipping worker, fisherman, gardener, and lumberman.
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bers’ height and weight used in estimating individuals’ BMI is extracted from the NielsenIQ

Annual Ailments, Health, and Wellness Survey, which is self-declared and complementary

to the NielsenIQ Consumer Panel.21 For AC use, we merge the U.S. Energy Information

Administration (EIA) Residential Energy Consumption Survey 2005, 2009, and 2015 with

the consumer panel data based on relevant demographic variables (Table E1). Particularly,

we create 432 unique cells using U.S. Census regions (Northeast, Midwest, South, West),

household area (urban or rural), household size (1, 2-3, or more), annual income (below

USD 40K, 40-100K, above 100K), race (white, black, other non-white), and head age (below

55 or above). We obtain a mean AC use of 81.6% over the consumer panel sample, close to

the U.S. nationwide average of 82-88% over the period 2005-2020.22 Table E2 displays the

prevalence of these four potential modifiers among the sample.

Table 4 reports the results of Equation 4 for sugary drinks. Employment in an outdoor

occupation is associated with a higher effect of extreme heat days on household sugary drink

purchases. Specifically, a day with a maximum temperature above 90◦F leads to a 0.35%

increase in the volume purchased of sugary drinks in the month among households with

at least one head employed in an outdoor occupation compared to 0.26% for households

without a head working outdoors. Outdoor workers are more exposed to extreme heat.

Reducing sugary drink consumption has been highlighted as a preventive factor for heat-

related illnesses among outdoor workers (El Khayat et al., 2022).

Households with at least one obese adult member also appear to drive the results. This

is in line with recent findings that obese individuals may be more sensitive to heat stress

(Speakman, 2018). However, these results are only based on the period 2016-2017 for which

height and weight information is available from the NielsenIQ Annual Ailments, Health, and

Wellness Survey. We find no differential impacts of extreme heat on bottled water purchases

21Information on household members’ height and weight is only available for 2016 and 2017. BMI is
defined as the body mass in kilograms divided by the square of the body height in meters.

22U.S. Energy Information Administration, Nearly 90% of U.S. households used air conditioning in 2020
(Accessed 30 April 2024).
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by outdoor occupation or adult member obesity status (Table E3). Outdoor workers and

obese individuals may respond to their higher exposure or sensitivity to extreme heat by

seeking energy from sugar or responding to cravings for sugar.

The demand for sugary drinks in households with children appears less reactive to heat

shocks (Table 4). Such households may be more time constrained and may exhibit more

consistent grocery shopping habits.23 If accompanied with their children during grocery

shopping, parents also tend to shop faster and avoid busy areas in-store (Page et al., 2018).

Finally, AC use has been documented as one of the most effective adaptation strategies to

extreme heat. Barreca et al. (2016) shows that it has been responsible for most of the decline

in heat-induced mortality in the U.S. since the 1960s. Nevertheless, we do not observe any

statistically significant differential effects of extreme heat on the volume purchased of sugary

drinks or bottled water by AC use (Table 4 and Table E3). This may be explained by the

significant prevalence of car ownership,24 the main mode of transportation in the country,

with the majority of cars featuring AC, reducing exposure to extreme heat during transport

to and from stores (Lee and Zheng, 2023).

4.4 Potential drivers

4.4.1 Changes in shopping habits

Temperatures may impact shopping habits, particularly the frequency of shopping trips as

households may be most exposed to outdoor temperatures when travelling to stores. We find

that the relationship between temperatures and the number of shopping trips in a month

displays an inverse U-shaped curve, with both extremely low and high temperatures leading

to fewer trips compared with the benchmark maximum temperature range of 40-80◦F. Days

with maximum temperatures below 30◦F and over 90◦F reduce the number of shopping

23According to responses by 900 American parents to a survey run by YouGov in 2023. Source: YouGov,
U.S.: Measuring kids’ influence on parents’ purchase decisions (Accessed 30 April 2024).

24According to Forbes, 91.7% of American households owned at least one vehicle in 2022. Source: Forbes,
Car Ownership Statistics 2024 (Accessed 30 April 2024).
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trips in the month by 0.16% and 0.05%, respectively (Table F1). Temperatures could also

influence the choice of store type. Convenience stores tend to offer less healthy options and

display a higher share of processed and industrialized items such as sugary drinks (Volpe et

al., 2018). However, Table F1 does not show a significant difference in the relative impact of

extreme temperatures on the number of trips in the month between convenience stores and

other stores.25

The positive effect of extreme heat on the volume purchased is also similar across store

types. A day above 90◦F increases the volume purchased for sugary drinks and bottled water

in the month by 0.32% and 0.56% in convenience stores and by 0.27% and 0.66% in other

store types, respectively (Table F2).26 However, when investigating the differential effect of

extreme heat across store types by area, we find that sugary drink purchases from urban

households increase proportionally across store types while rural households’ purchases only

increase in convenience stores (Table F3).

In line with Lee and Zheng (2023), these findings highlight that temperatures only

marginally impact the likelihood of shopping trips. Regarding the impact on volume, the

heat-induced increase in soft drink purchases is only driven by trips to convenience stores

for rural households. Such stores may be located closer to households.

4.4.2 Inter-channel substitution

Extreme temperatures could also influence beverage sales in the unobserved on-trade sector

(e.g., bars and restaurants) such that the observed increase in off-trade (e.g., grocery store)

sugary drink purchases during heat events could be the result of substitutions from the on-

trade sector, with no or limited impact on overall consumption. To test for this, we estimate

25Convenience stores also include bodegas, discount stores, liquor stores, service stations, small grocery
stores, and tobacco stores.

26The distribution of the average monthly volume purchased per adult equivalent unit by store type in
the sample is the following: 1,768.8 ml in convenience stores and 4,043.3 ml in other stores (sugary drinks);
556.5 ml in convenience stores and 1,771.5 ml in other stores (diet CSD); and 925.2 ml in convenience and
2,378.1 ml in other stores (bottled water).
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the heterogeneous impact of extreme temperatures on soft drink purchases by counties’

density of food and beverage establishments - a proxy for access to the on-trade sector.

Establishment density is defined as the number of establishments by 1,000 inhabitants.27

We do not evidence substitution from the on-trade to the off-trade sector. On the contrary,

the coefficient on the interaction term between daily maximum temperature and the density

of food and drink establishments is negative for days with a maximum temperature above

80◦F. Particularly, the positive effect of a day with a maximum temperature in the range

80-90◦F on sugary drink volume purchased is 32% lower for each additional establishment

per 1,000 inhabitants (Table F4). Our main estimate of the effect of hot temperatures on

the volume purchased of sugary drinks may thus be an underestimation of the true effect on

total consumption (from both off- and on-trade) as increased consumption is also expected

in food and drink establishments.

4.4.3 Price effect

Changes in soft drink volume purchased could be driven by temperature-induced variations in

prices. From a standard supply-and-demand model, if the demand curve shifts to the right

(e.g., temperature-induced shock leading to higher demand) while the (upward-slopping)

supply curve remains fixed, prices are expected to increase. We test this hypothesis using

the NielsenIQ Retail Scanner dataset for 2006-2019. This dataset contains store information

and weekly prices and sales volume for each UPC with positive sales for over 30,000 stores

(the exact number varies each year) from more than 90 retail chains across all U.S. markets.

Only stores and UPCs with positive sales throughout the entire sample period are included

in our beverage type-specific samples. We also drop stores alone in their county. The total

sample size varies by beverage type, from 12,155 stores for fruit juice & drink to 15,353 stores

27Data sources: U.S. Census Bureau’s County Business Patterns and the proxy North American Industry
Classification System (NAICS) code 722 ‘Food services and drinking places’, yearly; National Institutes of
Health, National Cancer Institute, U.S. County Population Data - 1969-2022 , yearly.
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for regular CSD (Table F5).28 We run the following multi-way panel fixed effect specification

at the store level, clustering standard errors at the county level (Equation 5).29

lnFs,c,y,m = α +
∑
i

βiTi,c,y,m +
∑
k

∑
j

µk,jWk,j,c,y,m + σc,m + γy,q + λs + εs,c,y,m (5)

Fs,c,y,m represents the Fisher price index calculated over all UPCs for store s in county

c and month m of year y.30 σc,m, γy,q, and λs represent county x month-of-the-year, year x

quarter-of-the-year, and store fixed effects, respectively. Figure F1 shows the evolution of

Fisher price indices by soft drink type over the sample period.

Results in Table 5 indicate that temperatures have only minor effects on soft drink retail

prices. The effect of a day with a maximum temperature above 95◦F is null or not statistically

significant for regular CSD, fruit juice and drink, and bottled water. For diet CSD, swapping

an average day with a maximum temperature between 65-70◦F for a day with a maximum

temperature above 95◦F decreases the average retail price by 0.09% over the month. On the

other hand, the impact of cold days on average monthly soft drink retail prices is mixed with

days with a maximum temperature below 25◦F increasing prices by 0.03% to 0.06% while

days with a maximum temperature in the range 25-30◦F decrease prices by 0.02% to 0.14%.

Results are robust to the inclusion of lags (Figure F2).

In line with Lee and Zheng (2023) and Gagnon and López-Salido (2020), we observe

limited retail price adjustments to extreme temperatures, unlikely to drive purchase responses

for regular CSD, fruit juice and drink, and bottled water. On the other hand, the observed

extreme heat-induced retail price decrease for diet CSD (-0.09%) is only 2.4 times lower

28All beverage-specific samples include at least one county in every State of the contiguous U.S. and the
District of Columbia.

29The NielsenIQ Retail Scanner dataset does not include store-level projection factors, thus we perform
unweighted regressions.

30Ft =
√∑

ptq0∑
p0q0

×
∑

ptqt∑
p0qt

. Using January 2006 as the base period.
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than the response in household volume purchased (-0.22%; see Section 4.1). Given that

the demand for such beverages is elastic in the U.S., with a price elasticity estimated to lie

between -1.29 and -1.91 (Zhen et al., 2011), extreme heat-induced retail price decreases may

be driving the contemporaneous response in diet CSD purchases. However, while the positive

effect of extreme heat days on diet CSD purchases is compensated over time (Figure D1),

the impact on prices remains persistent after two months (Figure F2).

4.4.4 Psychological biases

Psychological biases may participate in explaining consumers’ sensibility to high tempera-

tures, particularly projection bias and salience (Busse et al., 2015; Liao, 2020). Projection

bias states that consumers’ predictions about future utility are overvalued for every future

state of the world (Loewenstein et al., 2003). These biased predictions can be influenced

by the current state (e.g., weather). In practice, this is evidenced by the ex-post realisation

of a mistake, for example, by re-selling the convertible car bought on a sunny day in the

following months with less clement weather (Busse et al., 2015). We rule out projection

bias as a psychological channel driving the effect of extreme heat on sugary drink purchases

as we find no evidence of harvesting effects. Indeed, heat-induced increased sugary drink

purchases are most likely consumed and not stockpiled (Section 4.2), thus requiring to refill

inventories in the following periods.

Salience, on the other hand, is the idea that consumers’ attention may be systematically

directed toward certain attributes of a good rather than others with disproportionate utility

weights (Bordalo et al., 2013). It could be that the sweetness, refreshing, or comforting

aspects represent such attributes for sugary drinks, which could become more salient during

extreme heat days. It is hard to disentangle salience from projection bias as both chan-

nels are expected to lead to higher sugary drink purchases as a response to extreme heat.

Nevertheless, Busse et al. (2015) note that salience predicts the effect of ‘surprise’ changes

in temperatures relative to recent weather. Thus, we explore the differential effect between
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extreme heat days following a sudden increase in maximum temperature of at least 6◦F from

the previous day and other extreme heat days. The choice of 6◦F is dictated by the rare

occurrence of extreme heat days following day-on-day increases in maximum temperature for

higher thresholds (Figure F3). Results in Figure F4 do not support the existence of salience

as a mechanism explaining the temperature-sugary drink purchase relationship as day-on-day

changes in maximum temperature above 90◦F do not have a statistically significant impact

on the purchase of sugary drinks. However, Figure F4 shows that salience may participate

in explaining the impact of extreme heat on bottled water purchases. These findings are

robust to the use of a higher day-on-day change in maximum temperature threshold of 9◦F

(Figure F5).

The effect of extreme heat on sugary drink purchases could also be driven by mood

effects. Warmer days could be associated with a general higher propensity to spend on

any good. Lee and Zheng (2023) and Lai et al. (2022) rule out this hypothesis as they

find that extreme heat days reduce overall aggregate household spending. It could also

be that a high maximum temperature is not the only driver of the effect of extreme heat

days on sugary drink purchases. The nicer weather often associated with such days could

also play a role (e.g., clear blue sky, more socializing). While we control for other weather

variables in our main specification, including rain, a known mood shifter, we further test if

the effect of extreme heat is moderated by precipitations. We find that swapping an average

temperature day with a maximum temperature above 90◦F and no rain increases monthly

sugary drink purchases by 0.34%, while a similar day with rainfall only by 0.26% (Figure F6).

These results suggest that mood effects may play a role in explaining, at least partially, the

temperature-purchase relationship for sugary drinks.
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5 Accounting for historical exposure

We explore whether accounting for individuals’ historical exposure to extreme heat - proxied

by zip code-level historical exposure - mitigates the positive impact of heat shocks on sugary

drink purchases, potentially indicating adaptation to climate change. Previous literature has

investigated heterogeneous impacts by historical exposure using interactions with historical

time-of-year-specific normals (averages of climatic observations over a specific period) or

standard deviations (Dell et al., 2014). However, Roth Tran (2023) notes that while some

locations may have the same historical normals or standard deviations at different times of

the year, their capacity to deal with an extreme temperature shock at these specific times

may largely differ. For example, one colder location may have the same historical normal

in the middle of the summer as a warmer location in the spring, but the warmer location

may have more widespread AC and thus may be less reactive to an unusually hot day in the

spring than the colder location for a similar unusually hot day in the middle of the summer.

Instead, Roth Tran (2023) proposes to alleviate this concern by using the historical location-

specific probability of an extreme temperature day (rather than both time-of-the-year- and

location-specific).

We adopt Roth Tran (2023)’s specification in Equation 6, where Pr(Ti)
hist
z represents the

historical probability of a day falling into temperature bin Ti in zip code z. This probability

is derived from the past 30-year weather history (1974-2003) extracted from the U.S. NOAA

Global Historical Climatology Network database.31

Vh,z,y,m = α +
∑
i

[
ϕ1,iTi,z,y,m + ϕ2,iPrz(Ti)

hist × Ti,z,y,m

]
+
∑
k

∑
j

µk,jWk,j,z,y,m

+θZh,y + σz,m + γy,q + λh + εh,z,y,m

(6)

31See Table B3 for summary statistics. We do not include the terms Prz(Ti)
hist on their own in this

specification given that they are constant for each zip code and thus collinear with household fixed effects.
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where ϕ2,i captures the mitigating effect of past exposure. When ϕ1,i and ϕ2,i have oppo-

site signs, the relative effect of one extra day belonging to temperature bin Ti on purchases

decreases (in absolute value) as Prz(Ti)
hist increases.

Aligned with the limited heterogeneous effects across climate regions (see Section 4.3), we

find no evidence to support the hypothesis that higher historical exposure reduces the con-

temporaneous impact of extreme heat on sugary drink purchases. Although the coefficient on

the interaction terms between historical zip code-specific probabilities and temperature bins

are positive for hot temperature days, they are non-statistically significant, thus also ruling

out potential habit formation behaviours (Table 6). On the other hand, higher historical

exposure reduces the contemporaneous effect of extreme heat on bottled water purchases. A

10 percentage point increase in the historical zip code-specific likelihood of experiencing a

day with a maximum temperature above 90◦F reduces the contemporaneous impact of such

a day on bottled water purchases by approximately 15% (Table 6).32

Overall, this suggests that while the frequency and intensity of extreme heat events are

expected to increase due to climate change, increased expectation or experience of such

events may reduce their impact on bottled water purchases over time, but not on sugary

drink purchases.

6 Climate projections

We estimate a forecast of possible changes in sugary drink purchases due to climate change

between 2080-2099 and our historical sample 2004-2019 for each county. For this, we cou-

ple our estimates of the effect of maximum temperature on sugary drink purchases with

32Calculated as follows: −0.0122× 0.1÷ 0.0081 = −15.1% based on column 5 in Table 6.
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county-level daily maximum temperature and precipitation projections, which are drawn

from Rasmussen et al. (2016)’s probability-weighted ensemble models. These are obtained

from downscaling the 21 general circulation models from the IPCC Coupled Model Inter-

comparison Project phase 5 (CMIP5),33 and constructing an additional surrogate model for

each CMIP5 model mirroring their spatiotemporal probabilistic distribution including tail

estimates to better represent weather extremes. We specifically use projections associated

with two greenhouse gas (GHG) emission scenarios or representative concentration pathways

(RCP) as adopted by the Fifth Assessment Report of the IPCC: RCP 4.5 - an intermediate

scenario with GHG emissions starting to decline by 2045 thus assuming the adoption of

mitigation strategies; and RCP 8.5 - the worst-case or business-as-usual scenario with GHG

emissions continuing to rise until the end of the century. These two scenarios are useful in or-

der to incorporate future climate uncertainty into our projected impact estimations (Burke

et al., 2015a). As in Hsiang et al. (2017), we produce our simulation results under each

RCP using the probability-weighted average daily maximum temperature and precipitation

projections across the multi-model ensemble provided by Rasmussen et al. (2016), including

both the 21 CMIP5 models and their respective surrogate models.

Figure G1 presents the average number of days per year in each maximum temperature

bin across sample counties for the period 2004-2019 and by climate scenario for the period

2080-2099. Across the counties in our sample, the average number of days per year with

a maximum temperature above 35◦C (or 95◦F) was 10.8 over the period 2004-2019 and is

expected to increase to 38.6 under RCP 4.5 and 72.1 under RCP 8.5 over the period 2080-

2099. The average number of days in the bin [32, 35)C (or ≈ [90, 95)F) is also expected to

increase under both RCP scenarios. On the other hand and as a consequence, the average

33Climate projections from CMIP5 models have been used extensively in the economics literature to project
changes in outcomes to the end of the century (Carleton et al., 2022; Lai et al., 2022; Folini et al., 2021),
often by equally weighting the ensemble of CMIP5 models (e.g., taking the median across the 21 models for
each daily projection).
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number of days per year in all other (colder) bins is expected to decrease.34

Roth Tran (2023) and Lai et al. (2022) has highlighted the importance of accounting for

adaptation in projecting the impact of climate change on consumer behaviour. Given that we

did not identify significant effects on the interaction terms accounting for historical exposure

to temperature extremes for sugary drink purchases (Table 6), we estimate the effects of

future temperatures under three different specifications: one omitting historical exposure

and adaptation in line with our previous findings, one accounting for historical exposure but

not for adaptation, and one considering both historical exposure and adaptation to illustrate

its limited role in our context. For the latter, we follow Lai et al. (2022) by using two different

30-year baselines for past exposure, either 1974-2003 or 2050-2079. In effect, increased

historical exposure is used to proxy long-run adaptation which could reflect unobserved

adaptation investments or learning effects related to the intensity of past exposure (Dell et

al., 2014). Formally, we estimate the following three projected county-level relative changes

in average monthly purchases between the years 2080-2099 compared to our baseline results

in 2004-2019:

∆V̂ NH,NA
c = f(∆T̄c; β̂) (7)

∆V̂ H,NA
c = g(∆T̄c, P rc(T )

1974−2003; ϕ̂) (8)

∆V̂ H,A
c = g(∆T̄c, P rc(T )

2050−2079; ϕ̂) (9)

where f(∆T̄c; β) =
∑

i βi × ∆T̄i,c and g(∆T̄c, P rc(T )
P ;ϕ) =

∑
i(ϕ1,i × ∆T̄i,c + ϕ2,i ×

Prc(Ti)
P ×∆T̄i,c). β̂i are estimated using Equation 1 and ϕ̂1,i and ϕ̂2,i are estimated using

Equation 6 over the years 2004-2019 and the historical probabilities from 1974-2003. Es-

34Rasmussen et al. (2016)’s projections are provided as the number of days per year in bins of 1◦C length
at the county level. Thus, we transform our main Fahrenheit maximum temperature bins into equivalent
Celcius maximum temperature bins. We then estimate county-level baseline maximum temperature for the
period 2004-2019 using a population-weighted average of zip code maximum temperature. Source for zip
code level population data: U.S. Census Bureau, Demographic and Housing Characteristics, 2020.
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timates are reported in Table G1. ∆T̄i,c = T̄ 2080−2099
i,c − T̄ 2004−2019

i,c represent the change in

average number of days per month in maximum temperature bin i in county c between the

periods 2004-2019 and 2080-2099. Prc(Ti)
P represents the probability of the occurrence of

a day with maximum temperature belonging to bin i in county c over the 30-year period

P , defined either as 1974-2003 or 2050-2079. ∆V̂ NH,NA
c , ∆V̂ H,NA

c , and ∆V̂ H,A
c represent

the estimated average relative change in monthly volume purchased in 2080-2099 relative

to 2004-2019 in county c not accounting for historical exposure or adaptation (NH,NA),

accounting for historical exposure but not adaptation (H,NA), and accounting for both his-

torical exposure and adaptation (H,A), respectively. These county-level estimates are then

averaged at the national level and by climate region.35 A lower ∆V̂ H,A than ∆V̂ H,NA would

be consistent with long-run adaptation based on increased historical exposure.

Figure 5 presents the projected changes in sugary drink purchases by 2080-2099. Ac-

counting for historical exposure or adaptation widens the size of the confidence intervals but

does not materially impact the point estimates. This is in line with the results from Table 6,

where the coefficients on the interactions between maximum temperature bins and their his-

torical probability are small, non-negative, and non-statistically significant for extreme heat.

Our preferred specification is thus Equation 7 which does not account for historical exposure

or adaptation (∆V̂ NH,NA). At the national level, monthly average sugary drink purchases

is projected to increase by 0.73% under RCP 4.5 and 1.44% under RCP 8.5. For the aver-

age household in our sample, this is equivalent to an additional 39 ml and 77 ml per adult

equivalent unit per month under the two different climate scenarios, respectively. Assuming

an average of 10 grams (g) of sugar per 100 ml for sugary drinks,36 this translates to an

35Population-weighted average across sample counties. Source: National Institutes of Health, National
Cancer Institute, U.S. County Population Data - 1969-2022 , 2019.

36Based on the sugar content of the most sold brand of regular CSD, fruit juice, and fruit drink: Coca-
Cola (11.4g/100ml), Tropicana Pure Premium (8.4g/100ml), and Snapple fruit punch (9.2g/100ml). Sources:
Statista, Volume share of the leading CSD brands in the U.S. 2022 ; Statista, Leading brands of refrigerated
orange juice in the United States 2023 ; and Zippia, The 10 largest juice brands in the United States (Ac-
cessed 20 April 2024). Sugar content information is obtained directly from the respective websites of the
aforementioned brands.
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additional 3.9 g (under RCP 4.5) and 7.7 g (under RCP 8.5) of sugar per adult equivalent

unit per month for the average household, equivalent roughly to 1-2 sugar cubes. For the

90th percentile household buyer of sugary drinks with an average of 14,550 ml purchased per

month per adult equivalent unit, these changes in climatic conditions represent an additional

106 ml (under RCP 4.5) and 210 ml (under RCP 8.5), equivalent to 10.6 g and 21.0 g of sugar

per adult equivalent unit per month (or 2.5-5 sugar cubes), respectively. These projected

changes are driven by increased purchases due to more days with a maximum temperature

above 90◦F outweighed by decreased purchases due to fewer days with a maximum temper-

ature between 80◦F and 90◦F. Figure 5 also highlights the heterogeneity in projections by

climate region, showing higher relative changes in purchases in hotter regions compared to

colder ones (0.81% vs. 0.68% for RCP 4.5 and 1.54% vs. 1.35% for RCP 8.5, respectively).

Figure G2 presents the results for bottled water. Without accounting for historical expo-

sure or adaptation, the estimated average relative change in the volume purchased of bottled

water between 2004-2019 and 2080-2099 is +1.98% under RCP 4.5 and +3.86% under RCP

8.5. However, in line with results from Table 6, after accounting for adaptation through

increased exposure, the positive impact of future higher temperatures is reduced to +1.67%

under RCP 4.5 and +3.05% under RCP 8.5. Thus, our preferred specification for bottled

water is Equation 9, accounting for both historical exposure and adaptation (∆V̂ H,A). The

mitigating impact of adaptation is stronger in regions with hotter climates where the relative

increase in purchases is expected to be more moderate (non-statistically significant +1.16%

and +1.97% for hotter climate regions, under RCP 4.5 and RCP 8.5, respectively).

Our projections focus solely on the impact of future changes in climatic conditions, all

else equal. They are robust to using the median across Rasmussen et al. (2016)’s model

ensemble rather than the probability-weighted average (Figure G3). They are also robust

to accounting for projected changes in precipitations (Figure G4) and to the use of a richer

model including more maximum temperature bins (Table G2 and Figure G5).
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7 Discussion

Extreme heat affects purchasing behaviour. While previous research has shown that it re-

duces aggregate household consumption (Lee and Zheng, 2023; Lai et al., 2022), our findings

exhibit a distinct impact on dietary behaviour, specifically on soft drink consumption. Ex-

treme heat causes a persistent increase in sugary drink purchases, driven by an intensive

margin effect. On the other hand, the immediate positive effect of extreme heat on the pur-

chase of diet drinks, which contain non-caloric artificial sweeteners, is offset over time when

accounting for inter-temporal shifts in purchases. These patterns lead us to believe that

the additional sugary drink purchases induced by extreme heat may be consumed during

temperature peaks, while diet drinks may be at least partially stockpiled during heat shocks

such that we observe a drop in purchases of diet drinks in the following periods. In contrast,

the likely immediate consumption of sugary drinks necessitates refilling the inventory in the

following periods.

We explore heterogeneous effects and potential modifiers. First, the main effect of ex-

treme heat on sugary drink purchases is driven by urban households, which tend to be located

closer to any type of store than rural households and may experience higher exposure due

to heat island effects.37 In rural areas, the positive effect on purchases is only statistically

significant in convenience stores, which tend to be located closer to homes and feature a

higher share of unhealthy beverage options (Volpe et al., 2018). Second, we find that the

likelihood of using AC does not moderate the effect of extreme heat on sugary drink pur-

chases despite moderating their direct negative impact on health outcomes (Barreca et al.,

2016). Third, we also find that the extreme heat sensitivity of sugary drink purchases is

similar between households with and without children. This result is significant given the

high levels of sugary drink intake among children and childhood obesity in the U.S. (Han

37Across the 44 most populated U.S. cities, about 55% of the population lives in census tracts with an
Urban Heat Index over 8◦F — meaning that people in those census tracts feel at least 8◦F more heat because
of the local built environment. Source: Climate Central. Urban heat hot spots, 2023.
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and Powell, 2013). Fourth, having an outdoor occupation exacerbates the impact of extreme

heat on sugary drink purchases. Finally, we find that the demand for sugary drinks is more

sensitive to extreme heat in households with at least one obese adult member. These findings

suggest that the potential negative public health impact of extreme heat on diets through

increased sugary drink intake may be concentrated among the most exposed and vulnerable

households.

We investigate several mechanisms that could explain our results. First, we explore shop-

ping and consumption habits and only observe a limited negative impact of extreme heat on

the likelihood of a shopping trip. We also find no evidence of inter-channel substitutions from

out-of-home food and drink establishments. Second, we investigate whether the supply side

could influence shopping behaviours by modifying prices according to the weather. Consis-

tent with previous studies (Lee and Zheng, 2023; Gagnon and López-Salido, 2020), we detect

only minor non-statistically significant temperature-induced price adjustments by retailers,

which could not explain our results. Third, we consider whether extreme heat-induced in-

creases in sugary drink purchases could be driven by psychological mechanisms. From a

physiological perspective, one would predict extreme heat to increase only water consump-

tion to fulfil hydration needs but no changes in sugary drink intake. We investigate three

potential psychological biases that could explain departures from the physiological channel:

salience, projection bias, and mood swings. Significant sudden increases in temperatures

have been linked to salience, which may underlie the impact of extreme heat on impulsive

purchase decisions, such as those for convertible cars and AC (Busse et al., 2015; He et al.,

2022). However, our results do not support such a mechanism for sugary drinks. We also

rule out projection bias given that we do not observe any harvesting effect or stockpiling

of sugary drinks following extreme heat shocks. Nevertheless, we find evidence of a mood

effect with precipitations playing a minor moderating role in the impact of extreme heat on

sugary drink purchases. Present bias is another psychological mechanism that could explain

our main effect. Consumers may overweight the value they place on immediate consump-

31

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4862789

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



tion, leading to biased maximization of inter-temporal utility (Laibson, 1997; O’Donoghue

and Rabin, 1999). They may poorly anticipate or internalise the potential future negative

health effects associated with sugary drink intake and may respond to immediate cravings

and seek short-term pleasures (Allcott et al., 2019b). Irrational inter-temporal trade-offs

can be triggered by environmental cues (Ruhm, 2012). We find that the positive effect of

extreme heat on sugary drink purchases is higher among households with obese adult mem-

bers. Higher body weight has been found associated with present bias preferences and the

lack of self-control in general (Courtemanche et al., 2015; Stoklosa et al., 2018). In summary,

mood swings and present bias could represent psychological mechanisms behind our results.

There are potential caveats to our analysis. First, we are only capturing households’

self-scanned purchases and assume these are distributed evenly between adults and based on

the adult equivalent scale for adolescents and children within all households. However, we

cannot verify if these purchases are shared with guests, nor can we observe actual individual

consumption. Second, while home-scan panel data capture purchase trends reasonably well,

purchases are typically under-reported (Leicester and Oldfield, 2009). Soft drinks may not

make it home to be scanned if they are consumed beforehand. If the level of under-reporting

remains constant between mild temperature days and extreme temperature shocks, we would

be accurately estimating the relative change in purchases. However, if extreme heat drives

under-reporting, our estimate would represent a lower bound of its effect on purchases.38

While home-scan panel data remains the best data source for this type of analysis, it is

important to acknowledge their limitations. Third, we cannot fully disentangle between

demand and supply response effects beyond price adjustments. Retailers may use marketing

campaigns and in-store product placement to encourage the consumption of specific products

during temperature peaks. Fourth, we only control for a limited number of potentially

38To assess this risk, we perform a similar specification as Equation 1 but using the NielsenIQ Retail
Scanner dataset and find consistent results for retail sales, alleviating our concerns regarding selective under-
reporting in the consumer panel. Results are available from the authors upon request.
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confounding environmental factors. Others, such as air pollution have been found to impact

obesity (Deschenes et al., 2020). Nevertheless, evidence of the direct effect of air pollution

on off-trade food purchasing behaviours is limited (Fan et al., 2022). Furthermore, it is

not clear which dimensions of air pollution should be controlled for (e.g., gases, particulate

matters) and certain pollutants are correlated with some weather variables, which poses

the challenge of disentangling their interactions (Buckley et al., 2014). Finally, our analysis

disregards the income effect of extreme heat as a driver of the main effects. We assume that

short-term temperature hikes do not increase household income and thereby spending on soft

drinks. On the contrary, the long-term higher occurrences of extreme heat have been found

to negatively impact labour supply and household income (Neidell et al., 2021; Deryugina

and Hsiang, 2014; Jessoe et al., 2018), but this is not identified in our adaptation analysis.

There is a concern that our main specification, which aggregates purchase data at the

monthly level, may underestimate the impact of daily temperature extremes. We favoured

a monthly analysis for two main reasons. First, unlike previous studies of the impact of

extreme temperatures on aggregate household consumption (Lee and Zheng, 2023; Lai et

al., 2022), we examine the purchase of specific items. Soft drinks can typically be stored and

do not require the same frequency of purchase as other food items, such as fresh food, do.

Thus, our monthly aggregation minimizes zero-purchase household-month observations and

is more representative of purchasing patterns.39 Second, we want to reduce the noise caused

by autocorrelation in daily maximum temperature. Figure A2 shows a 95% correlation

between daily maximum temperature and its one-day lag. Previous studies have aggregated

data at the weekly or 10-day level to address this issue (Lee and Zheng, 2023; Lai et al.,

2022). However, the autocorrelation remains high after these short periods (84% after seven

39On average across the sample, a household takes 108 trips to stores per year. Most of these trips do not
involve purchasing soft drinks. We still observe significant censoring at zero even after aggregating the data
at the monthly level. Figure A3 shows that the average number of months per year per household with at
least one positive purchase is as low as four for bottled water and up to seven for fruit juice & drink. This
supports the use of a Poisson pseudo-maximum likelihood regression approach on monthly data.
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days, 82% after 10 days).

Our analysis cannot draw conclusions on the projected overall effect of additional sugary

drink purchases on body weight. To assess its impact on the average weight of the population,

one would need to consider, at a minimum, the impact of extreme temperatures on individ-

uals’ overall diets and physical activity levels. The identified average increase in Americans’

caloric intake from sugary drinks could potentially be offset by a climate-induced reduction

in overall intake from other sources or by an increase in physical activity. Climate change is

likely to increase net physical activity levels in colder months and regions of the U.S., but

the opposite is expected for summer months, especially in hotter regions (Obradovich and

Fowler, 2017). We consider this limitation as an important question for future research.

Nevertheless, we take the view that the projected climate-induced increase in sugary

drink purchases is likely to have a negative overall impact on diets and should be seen as a

public health concern. These beverages represent empty calories with little to no nutritional

value40 and constitute the largest source of added sugar intake in Americans’ diets. Increases

in sugary drink intake could, at best, be neutralized if offset by a reduction in other sugary

intakes rather than a reduction in calories from nutritious foods. This projected increase

also goes against the recent decline in sugary drink intake and the positive effects of public

health policies such as local soda taxes (Welsh et al., 2011; Ricciuto et al., 2022).

Our analysis has societal implications. Americans’ poor dietary patterns are threatening

both health and environmental sustainability (Willett et al., 2019; Crippa et al., 2021).

Amidst climate change and the expected increase in the frequency of extreme heat events,

this paper is the first to highlight their impact on dietary behaviour. Using climate model

predictions under two GHG emission scenarios, we project a rise in sugary drink purchases

by the end of the century of 0.73% to 1.44% compared to 2004-2019 levels. We find no

40Except 100% fruit juices. However, while they often contain healthful nutrients like vitamins and min-
erals, their consumption should also be limited as they contain just as much sugar and calories as regular
CSD.
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evidence of adaptation based on increased historical exposure to extreme heat. Historically

hotter areas as well as more exposed and vulnerable households, such as those with members

working outdoors or being obese, may see stronger increases in sugary drink purchases. Our

findings contribute to informing policymaking aimed at promoting healthier diets under

climate change, particularly in settings grappling with an obesity epidemic.
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Figure 1. Monthly distribution of daily maximum temperature, 2004-2019. N =
5, 834, 433 household-month observations. F: Fahrenheit.
Back to Section 2.
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Figure 2. The average effect of daily maximum temperature on monthly soft
drink volume purchased, by soft drink type. This figure shows results from regressing
the specification in Equation 1 estimated via Poisson pseudo-maximum likelihood. Vertical
segments show the 95% confidence interval. The reference maximum temperature bin is
(65-70)F. Projection factors are used. Robust standard errors are clustered at the zip code
level. CSD: carbonated soft drink. F: Fahrenheit. Table C1 shows the same results in table
format.
Back to Section 4.1.
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Figure 3. The cumulative effect of daily maximum temperature below 30◦F and
above 90◦F on monthly sugary drink volume. This figure shows results from regressing
the specification in Equation 3 for days with a maximum temperature (a) below ≤ 30◦F and
(b) above ≥ 90◦F, via Poisson pseudo-maximum likelihood. Plot represents the cumulative
effect

∑2
t=−1 β̂i,m−t. The reference maximum temperature bin is (40-80)F. As a matter of

space, we do not present the results for the bins (30, 40]F and [70, 80)F, but these bins are
included in the regression. Vertical segments show the 95% confidence interval. Projection
factors are used. Robust standard errors are clustered at the zip code level. F: Fahrenheit.
Back to Section 4.2.
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Figure 4. The average effect of daily maximum temperature on monthly sugary
drink volume purchased, by annual household income, area, intensity of con-
sumption, and climate region. This figure displays results from regressing the specifica-
tion in Equation 1 interacting each temperature bin with two types of county areas (urban,
rural; source: U.S. Census Bureau, 2010), three household annual income levels (below USD
40K, between USD 40-100K, above USD 100K), three intensity of consumption levels (based
on terciles of yearly total volume per adult equivalent unit), and three climate regions (based
on terciles of average zip code maximum temperature over the period 1974-2003), via Poisson
pseudo-maximum likelihood. The reference maximum temperature bin is (40-80)F. Projec-
tion factors are used. Vertical segments show the 95% confidence interval. Robust standard
errors are clustered at the zip code level. F: Fahrenheit. USD: U.S. dollars, base 2015.
Back to Section 4.3.
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Figure 5. Average relative change in the volume purchased of sugary drink from
climate projections by climate region, with and without accounting for histori-
cal exposure and adaptation, from 2004-2019 to 2080-2099. This figure shows the
relative effect of changes in maximum temperatures on sugary drink volume purchased in
2080-2099 relative to 2004-2019 derived from Equation 7 (∆V̂ NH,NA; no historical exposure,
no adaptation), Equation 8 (∆V̂ H,NA; historical exposure, no adaptation), and Equation 9
(∆V̂ H,A; historical exposure, adaptation). Population-weighted average across sample coun-
ties (source: National Institutes of Health, National Cancer Institute, U.S. county population
data, 2019). Results are shown for the national aggregate and for three climate regions un-
der two greenhouse gas emission scenarios, RCP 4.5 and RCP 8.5. The hot, mild, and
cold regions include sample counties within three terciles of average maximum temperature
over the period 1974-2003. Maximum temperature predictions are derived from county-level
probability-weighted averages across the multi-model ensemble from Rasmussen et al. (2016).
Vertical segments show the 95% confidence intervals.
Back to Section 6.

47

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4862789

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Tables

mean sd min max

Regular CSD 3,081.5 27.2 0.0 481,929.8
Fruit juice/drink 2,328.0 14.5 0.0 221,564.7
Diet CSD 2,730.6 31.2 0.0 531,772.9
Bottled water 3,303.3 33.0 0.0 494,483.7

Table 1. Monthly soft drink volume purchased per adult equivalent unit, in millil-
itres, 2004-2019. N = 5, 834, 433 household-month observations. We use the following
adult equivalent unit scale: 0.77 for children < 5 years old; 0.80 for children 6-12 years old,
0.88 for 13-18 years old; Source: Food and Agriculture Organization of the United Nations,
Human Energy Requirements, Report of a Joint FAO/WHO/UNU Expert Consultation:
Rome, 17-24 October 2001. Projection factors are used. CSD: carbonated soft drink. sd:
standard deviation.
Back to Section 2.

mean sd min max

Max temperature (F) 67.6 19.5 -22.2 122.3
Min temperature (F) 47.2 18.1 -44.4 95.0
Mean temperature (F) 57.4 18.5 -30.7 106.6
Precipitations (mm) 2.9 7.5 0.0 537.9
Snowfall (mm) 1.7 12.1 0.0 798.3
Wind speed (m/s) 3.2 1.6 0.0 44.9

Table 2. Daily weather characteristics at zip code level, 2004-2019. N = 45, 296, 720
zip code-day observations. sd: standard deviation; F: Fahrenheit; mm: millimeters; m/s:
meter per second.
Back to Section 2 or Section 3.
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Absolute
change

Relative
change

Extensive
margin

Intensive
margin

≤ 25F 0.8359 0.0005 -0.0002 0.0002
(4.7384) (0.0009) (0.0003) (0.0008)

(25, 30]F -6.0748 -0.0007 -0.0000 -0.0007
(5.7189) (0.0011) (0.0003) (0.0009)

(30, 35]F 3.8953 0.0014 -0.0001 0.0013∗

(4.8415) (0.0009) (0.0003) (0.0008)
(35, 40]F -0.8629 0.0002 -0.0005∗∗ -0.0001

(4.1061) (0.0008) (0.0002) (0.0007)
(40, 45]F -2.4834 -0.0001 -0.0001 0.0006

(3.9111) (0.0007) (0.0002) (0.0006)
(45, 50]F 1.7317 0.0005 -0.0003 0.0000

(3.6203) (0.0007) (0.0002) (0.0006)
(50, 55]F 1.2354 0.0003 -0.0002 0.0005

(3.3680) (0.0007) (0.0002) (0.0006)
[80, 85)F 9.9490∗∗∗ 0.0018∗∗∗ -0.0001 0.0017∗∗∗

(2.9953) (0.0006) (0.0002) (0.0005)
[85, 90)F 13.9259∗∗∗ 0.0025∗∗∗ -0.0000 0.0019∗∗∗

(3.2018) (0.0006) (0.0002) (0.0005)
[90, 95)F 16.3390∗∗∗ 0.0029∗∗∗ 0.0001 0.0026∗∗∗

(3.6295) (0.0007) (0.0002) (0.0006)
≥ 95F 20.1970∗∗∗ 0.0034∗∗∗ 0.0002 0.0026∗∗∗

(3.9804) (0.0007) (0.0002) (0.0006)

N 5834298 5820876 5834298 4291365
Weather controls Yes Yes Yes Yes
Time-varying HH controls Yes Yes Yes Yes
Zip code x month of year FE Yes Yes Yes Yes
Year x quarter of year FE Yes Yes Yes Yes
Household FE Yes Yes Yes Yes
Model OLS PPML OLS Log-OLS

Table 3. The average effect of daily maximum temperature on monthly sugary
drink volume purchased per adult equivalent unit. This table shows the results of
(1) the main specification in Equation 1 using ordinary least squares (OLS) in levels as
absolute change, (2) using Poisson pseudo-maximum likelihood (PPML) as relative change,
(3) using a dummy for positive purchase as the dependent variable via OLS as incidence
or extensive margin, and (4) using log-transformed volume conditional on purchase as the
dependent variable via OLS as intensive margin. The reference maximum temperature bin is
(65-70)F. As a matter of space, we do not present the results for the bins (55, 60]F, (60, 65]F,
[70, 75)F, and [75, 80)F, but these bins are included in the regression. Projection factors are
used. Robust standard errors are clustered at the zip code level. F: Fahrenheit. FE: fixed
effects. HH: household. *** p < 0.01, ** p < 0.05, * p < 0.1.
Back to Section 4.1.
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Outdoor Obese Children AC use

≤ 30F -0.0003 -0.0024 -0.0004 -0.0008
(0.0006) (0.0044) (0.0006) (0.0016)

≤ 30F× Mod 0.0007 -0.0004 0.0012∗∗ 0.0007
(0.0006) (0.0029) (0.0006) (0.0016)

[30, 40)F 0.0003 -0.0001 0.0005 0.0017
(0.0005) (0.0029) (0.0005) (0.0012)

[30, 40)F× Mod 0.0003 0.0018 -0.0003 -0.0015
(0.0006) (0.0024) (0.0006) (0.0012)

(80, 90]F 0.0018∗∗∗ 0.0008 0.0022∗∗∗ 0.0014∗∗

(0.0003) (0.0015) (0.0003) (0.0006)
(80, 90]F× Mod 0.0005 -0.0001 -0.0009∗∗∗ 0.0007

(0.0003) (0.0008) (0.0002) (0.0006)
≥ 90F 0.0026∗∗∗ 0.0005 0.0031∗∗∗ 0.0019∗∗∗

(0.0004) (0.0023) (0.0004) (0.0007)
≥ 90F× Mod 0.0009∗∗∗ 0.0030∗∗ -0.0010∗∗∗ 0.0012∗

(0.0003) (0.0014) (0.0003) (0.0006)

N 5820876 448145 5820876 5820876
pseudo R2 0.562 0.734 0.563 0.562
Weather controls Yes Yes Yes Yes
Time-varying HH controls Yes Yes Yes Yes
Zip code x month of year FE Yes Yes Yes Yes
Year x quarter of year FE Yes Yes Yes Yes
Household FE Yes Yes Yes Yes

Table 4. Interaction effects between maximum temperature and potential mod-
ifiers of the effect on the monthly volume purchased of sugary drinks. This
table displays results from regressing the specification in Equation 4 estimated via Poisson
pseudo-maximum likelihood. Mod represents outdoor (column 1), obese (column 2), chil-
dren (column 3), and AC use (column 4). Outdoor equals 1 for years in which at least one
household head has an outdoor occupation. Obese equals 1 for years in which at least one
adult household member is obese (based on a body mass index above 30 as estimated from
self declared height and weight information, only provided for 2016-2017). Children equals
1 for years in which at least one household member is a child. AC use equals 1 for years in
which the household used AC. Source for height and weight information: NielsenIQ Annual
Ailments, Health, and Wellness Survey. Source for AC use data: U.S. Energy Information
Administration Residential Energy Consumption Survey 2005, 2009, and 2015 matched on
demographics (see Table E1). The reference maximum temperature bin is (40-80)F. Projec-
tion factors are used. Robust standard errors are clustered at the zip code level. AC: air
conditioning. F: Fahrenheit. FE: fixed effects. HH: household. *** p < 0.01, ** p < 0.05, *
p < 0.1.
Back to Section 4.3.
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Regular CSD Fruit juice/drink Diet CSD Bottled water

≤ 25F 1.0003∗ 1.0004∗∗ 1.0003 1.0006
(0.0002) (0.0002) (0.0002) (0.0005)

(25, 30]F 0.9993∗∗∗ 0.9998 0.9986∗∗∗ 0.9998
(0.0002) (0.0002) (0.0003) (0.0003)

(30, 35]F 1.0000 0.9998 1.0001 1.0011∗∗∗

(0.0002) (0.0002) (0.0002) (0.0002)
(35, 40]F 1.0000 1.0003∗ 0.9997∗ 1.0003

(0.0001) (0.0001) (0.0002) (0.0003)
(40, 45]F 0.9998 1.0000 0.9996∗∗ 1.0000

(0.0001) (0.0001) (0.0002) (0.0002)
(45, 50]F 0.9999 0.9998∗ 0.9999 1.0000

(0.0001) (0.0001) (0.0001) (0.0002)
(50, 55]F 0.9999 0.9999 1.0002 0.9999

(0.0001) (0.0001) (0.0001) (0.0002)
[80, 85)F 0.9998 0.9999 0.9995∗∗∗ 1.0001

(0.0001) (0.0002) (0.0001) (0.0002)
[85, 90)F 0.9998 0.9999 0.9992∗∗∗ 0.9999

(0.0002) (0.0001) (0.0002) (0.0002)
[90, 95)F 1.0001 1.0001 0.9995∗∗∗ 1.0004∗

(0.0001) (0.0001) (0.0002) (0.0002)
≥ 95F 0.9998 1.0001 0.9991∗∗∗ 1.0000

(0.0002) (0.0002) (0.0002) (0.0003)

N 2579304 2042040 2220792 2371824
adj. R2 0.715 0.679 0.705 0.747
Weather controls Yes Yes Yes Yes
County x month of year FE Yes Yes Yes Yes
Year x quarter of year FE Yes Yes Yes Yes
Store FE Yes Yes Yes Yes

Table 5. The average effect of daily maximum temperature on monthly retail
prices, by soft drink type. This table shows results from regressing Equation 5 via
ordinary least squares. The reference maximum temperature bin is (65,70)F. As a matter of
space, we do not present the results for the bins (55, 60]F, (60, 65]F, [70, 75)F, and [75, 80)F,
but these bins are included in the regression. Dependent variable: ln of Fisher price index
(base: January 2006). The coefficients are exponentiated and should be interpreted as change
ratios. Robust standard errors are clustered at the county level. CSD: carbonated soft drink.
F: Fahrenheit. FE: fixed effects. *** p < 0.01, ** p < 0.05, * p < 0.1.
Back to Section 4.4.3.
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Sugary drinks Bottled water

(1) (2) (3) (4) (5) (6)

≤ 30F -0.0001 -0.0017 -0.0038 -0.0032∗∗∗ -0.0018 -0.0028
(0.0006) (0.0011) (0.0024) (0.0012) (0.0020) (0.0045)

≤ 30F× Prz(≤ 30)hist 0.0183∗ -0.0130
(0.0096) (0.0191)

≤ 30F× (top half) 0.0039 -0.0003
(0.0024) (0.0046)

(30, 40]F 0.0004 -0.0006 -0.0004 -0.0007 -0.0052∗∗ -0.0038∗

(0.0005) (0.0013) (0.0010) (0.0010) (0.0023) (0.0020)
(30, 40]F× Prz((30, 40])

hist 0.0105 0.0398∗∗

(0.0107) (0.0194)
(30, 40]F× (top half) 0.0010 0.0037∗

(0.0011) (0.0021)
[80, 90)F 0.0019∗∗∗ 0.0014∗∗ 0.0016∗∗∗ 0.0038∗∗∗ 0.0033∗∗∗ 0.0038∗∗∗

(0.0003) (0.0006) (0.0005) (0.0005) (0.0010) (0.0008)
[80, 90)F× Prz([80, 90))

hist 0.0022 0.0014
(0.0020) (0.0035)

[80, 90)F× (top half) 0.0006 -0.0003
(0.0006) (0.0010)

≥ 90F 0.0028∗∗∗ 0.0027∗∗∗ 0.0027∗∗∗ 0.0063∗∗∗ 0.0081∗∗∗ 0.0080∗∗∗

(0.0004) (0.0006) (0.0008) (0.0008) (0.0011) (0.0013)
≥ 90F× Prz(≥ 90)hist 0.0009 -0.0122∗∗

(0.0033) (0.0055)
≥ 90F× (top half) 0.0002 -0.0023

(0.0008) (0.0015)

N 5820876 5820876 5820876 5436272 5436272 5436272
pseudo R2 0.562 0.562 0.562 0.568 0.568 0.568
Weather controls Yes Yes Yes Yes Yes Yes
Time-varying HH controls Yes Yes Yes Yes Yes Yes
Zip code x month of year FE Yes Yes Yes Yes Yes Yes
Year x quarter of year FE Yes Yes Yes Yes Yes Yes
Household FE Yes Yes Yes Yes Yes Yes

Table 6. Interaction effects between maximum temperature and historical expo-
sure on the monthly volume purchased of sugary drink and bottled water. This
table shows results from regressing Equation 1 (column 1) and Equation 6 (column 2) as well
as Equation 6 but replacing Prz(Ti)

hist by an indicator for whether the historical frequency of
days in bin Ti is above the median historical frequency (column 3), all estimated via Poisson
pseudo-maximum likelihood. The share of historical observations for which Ti days occur
(Prz(Ti)

hist) remains fixed over time for any given zip code z for all i and is estimated based
on weather data from the U.S. NOAA Global Historical Climatology Network for 1974-2003.
The reference maximum temperature bin is (40-80)F. Projection factors are used. Robust
standard errors are clustered at the zip code level. FE: fixed effects. F: Fahrenheit. HH:
household. *** p < 0.01, ** p < 0.05, * p < 0.1.
Back to Section 5 or Section 6.

52

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4862789

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Appendix

A. Data cleaning

�

�

�

�

�

1F
SD
FO

U

� �� �� �� ��� ��� ��� ��� ���

%JTUBODF�	LN


Figure A1. Distance to the furthest (fifth) weather station accounted in inverse-
distance weighted average daily maximum temperature, 2004-2019. N = 7, 582
weather stations. km: kilometre.
Back to Section 2.
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Figure A2. Autocorrelation in daily maximum temperature, 2004-2019. This figure
shows the correlation between Day 0 and its 30 lags for maximum temperature across the
sample. N = 45, 296, 720 zip code-day observations.
Back to Section 7.
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Figure A3. Average number of months with a positive purchase per year, by soft
drink type, 2004-2019. N = 5, 834, 433 household-month observations. CSD: carbonated
soft drink..
Back to Section 7.
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B. Descriptive statistics
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Figure B1. Household month-of-year average purchased volume per adult equiv-
alent unit, by soft drink type, 2004-2019. N = 5, 834, 433 household-month observa-
tions. Base = 100 in January. CSD: carbonated soft drink.
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Figure B2. Distribution of the number of days with maximum temperature above
95◦F and below 25◦F by household-year, 2004-2019. N = 490, 847 household-year
observations. F: Fahrenheit.
Back to Section 2.
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Figure B3. Daily maximum temperature at zip code level, 2004-2019. N =
45, 296, 720 zip code-day observations. Vertical dotted blue and red lines represent 25◦F
and 95◦F, respectively. F: Fahrenheit.
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Figure B4. Weekly average minimum and maximum temperature across all zip
code-weeks, 2004-2019. N = 6, 484, 126 zip code-week observations.
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Figure B5. Change in maximum temperature over the sample zip codes, 2004-
2019. N = 13, 522 zip codes. F: Fahrenheit.
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Figure B6. Distribution of daily precipitations, snowfall, and average wind speed
by household-month, 2004-2019. N = 5, 834, 433 household-month observations. Ob-
servations below 0 mm represent no precipitations or no snowfall (there are no negative
values). mm: millimeters; m/s: meters per second.
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mean sd

Size 2.6 0.0
Head age 51.8 0.1
Income ≥ USD 100K 0.226 0.002
Race: Black 0.110 0.002
Race: Asian 0.034 0.001
Race: Hispanic 0.124 0.002

Table B1. Household characteristics, 2004-2019. N = 490, 847 household-year observa-
tions. HH: household, K: thousands, sd: standard deviation, USD: U.S. dollar (base 2015).
Back to Section 2.
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mean sd min max N

≤ 25F 18.3 6.0 -22.2 25.0 964,894
(25, 30]F 27.7 1.4 25.0 30.0 839,533
(30, 35]F 32.7 1.4 30.0 35.0 1,346,842
(35, 40]F 37.6 1.4 35.0 40.0 1,718,049
(40, 45]F 42.6 1.4 40.0 45.0 2,005,900
(45, 50]F 47.6 1.4 45.0 50.0 2,329,294
(50, 55]F 52.6 1.4 50.0 55.0 2,664,708
(55, 60]F 57.5 1.4 55.0 60.0 3,007,626
(60, 65]F 62.5 1.4 60.0 65.0 3,341,116
(65, 70)F 67.5 1.4 65.0 70.0 3,635,736
[70, 75)F 72.6 1.4 70.0 75.0 4,074,190
[75, 80)F 77.6 1.4 75.0 80.0 4,737,556
[80, 85)F 82.5 1.4 80.0 85.0 5,271,759
[85, 90)F 87.4 1.4 85.0 90.0 4,652,351
[90, 95)F 92.1 1.4 90.0 95.0 3,168,951
≥ 95F 99.1 3.8 95.0 122.3 1,538,190

Total 67.6 19.5 -22.2 122.3 45,296,696

Table B2. Daily maximum temperature across temperature bins and zip code-
days, 2004-2019. F: Fahrenheit. sd: standard deviation; N: number of observations.
Back to Section 2.
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mean sd min max

≤ 25F 8.0 11.0 0.0 77.6
(25, 30]F 6.7 6.7 0.0 27.7
(30, 35]F 11.1 9.7 0.0 35.4
(35, 40]F 14.8 11.0 0.0 40.9
(40, 45]F 16.7 10.3 0.0 45.7
(45, 50]F 18.9 10.6 0.0 67.6
(50, 55]F 21.3 10.1 0.1 75.8
(55, 60]F 24.5 9.3 0.6 107.5
(60, 65]F 28.2 9.4 2.1 113.1
(65, 70)F 31.0 9.9 8.3 96.1
[70, 75)F 34.4 9.3 11.0 107.5
[75, 80)F 38.3 9.1 1.8 81.5
[80, 85)F 41.1 13.0 0.5 108.3
[85, 90)F 35.8 20.1 0.0 123.0
[90, 95)F 23.2 20.7 0.0 107.3
≥ 95F 11.3 21.4 0.0 144.7

Table B3. Historical number of days by maximum temperature bins and zip code-
year, 1974-2003. N = 124, 018 zip code-year observations. F: Fahrenheit. sd: standard
deviation.
Back to Section 5.

64

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4862789

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



C. Additional main results and robustness checks
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Figure C1. The average effect of daily minimum temperature on monthly sugary
drink volume purchased. This figure shows results from regressing the specification
in Equation 1 replacing maximum temperature bins by minimum temperature bins, via
Poisson pseudo-maximum likelihood. Vertical segments show the 95% confidence interval.
The reference minimum temperature bin is (45-50)F. Projection factors are used. Robust
standard errors are clustered at the zip code level. F: Fahrenheit.
Back to Section 4.1.
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Regular CSD Fruit juice/drink Diet CSD Bottled water

≤ 25F 0.0012 -0.0004 -0.0013 -0.0032∗

(0.0013) (0.0011) (0.0013) (0.0018)
(25, 30]F -0.0009 0.0002 -0.0020 -0.0036∗

(0.0015) (0.0013) (0.0015) (0.0020)
(30, 35]F 0.0018 0.0010 -0.0023∗ -0.0030∗

(0.0013) (0.0011) (0.0013) (0.0018)
(35, 40]F 0.0000 0.0006 -0.0017 -0.0005

(0.0011) (0.0009) (0.0011) (0.0015)
(40, 45]F 0.0004 -0.0005 0.0005 0.0009

(0.0010) (0.0009) (0.0011) (0.0014)
(45, 50]F 0.0004 0.0006 -0.0013 -0.0003

(0.0010) (0.0008) (0.0010) (0.0013)
(50, 55]F 0.0004 0.0003 -0.0005 -0.0016

(0.0009) (0.0008) (0.0010) (0.0013)
[80, 85)F 0.0020∗∗ 0.0019∗∗∗ -0.0000 0.0028∗∗∗

(0.0008) (0.0006) (0.0008) (0.0009)
[85, 90)F 0.0023∗∗∗ 0.0029∗∗∗ 0.0024∗∗∗ 0.0053∗∗∗

(0.0008) (0.0007) (0.0009) (0.0010)
[90, 95)F 0.0027∗∗∗ 0.0034∗∗∗ 0.0027∗∗∗ 0.0062∗∗∗

(0.0009) (0.0008) (0.0010) (0.0011)
≥ 95F 0.0033∗∗∗ 0.0038∗∗∗ 0.0022∗∗ 0.0075∗∗∗

(0.0010) (0.0009) (0.0011) (0.0013)

N 5650042 5788838 5234563 5436272
pseudo R2 0.600 0.491 0.692 0.568
Weather controls Yes Yes Yes Yes
Time-varying HH controls Yes Yes Yes Yes
Zip code x month of year FE Yes Yes Yes Yes
Year x quarter of year FE Yes Yes Yes Yes
Household FE Yes Yes Yes Yes

Table C1. The average effect of daily maximum temperature on monthly soft drink
volume purchased, by soft drink type. This table shows results from regressing the
specification in Equation 1 via Poisson pseudo-maximum likelihood. The reference maximum
temperature bin is (65-70)F. As a matter of space, we do not present the results for the bins
(55, 60]F, (60, 65]F, [70, 75)F, and [75, 80)F, but these bins are included in the regression.
Projection factors are used. Robust standard errors are clustered at the zip code level. CSD:
carbonated soft drink. FE: fixed effects. F: Fahrenheit. HH: household. *** p < 0.01, **
p < 0.05, * p < 0.1.
Back to Section 4.1.
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(1) (2) (3) (4)

≤ 25F 0.0005 0.0005 -0.0003 -0.0007
(0.0009) (0.0009) (0.0008) (0.0008)

(25, 30]F -0.0007 -0.0010 -0.0011 -0.0014
(0.0011) (0.0010) (0.0010) (0.0010)

(30, 35]F 0.0014 0.0013 0.0011 0.0000
(0.0009) (0.0009) (0.0009) (0.0008)

(35, 40]F 0.0002 0.0001 -0.0001 -0.0008
(0.0008) (0.0008) (0.0007) (0.0007)

(40, 45]F -0.0001 -0.0003 -0.0003 0.0003
(0.0007) (0.0007) (0.0007) (0.0007)

(45, 50]F 0.0005 0.0004 0.0003 -0.0006
(0.0007) (0.0007) (0.0006) (0.0006)

(50, 55]F 0.0003 0.0003 0.0002 -0.0002
(0.0007) (0.0006) (0.0006) (0.0006)

[80, 85)F 0.0018∗∗∗ 0.0018∗∗∗ 0.0019∗∗∗ 0.0017∗∗∗

(0.0006) (0.0005) (0.0005) (0.0005)
[85, 90)F 0.0025∗∗∗ 0.0024∗∗∗ 0.0025∗∗∗ 0.0026∗∗∗

(0.0006) (0.0006) (0.0005) (0.0005)
[90, 95)F 0.0029∗∗∗ 0.0029∗∗∗ 0.0032∗∗∗ 0.0029∗∗∗

(0.0007) (0.0006) (0.0006) (0.0006)
≥ 95F 0.0034∗∗∗ 0.0034∗∗∗ 0.0037∗∗∗ 0.0035∗∗∗

(0.0007) (0.0007) (0.0006) (0.0006)

N 5820876 5825007 5825316 5759497
pseudo R2 0.562 0.541 0.535 0.662
Weather controls Yes Yes Yes Yes
Time-varying HH controls Yes Yes Yes No
Household FE Yes Yes Yes No
Year x quarter of year FE Yes Yes Yes Yes
Zip code x month of year FE Yes No No Yes
County x month of year FE No Yes No No
State x month of year FE No No Yes No
Household x year FE No No No Yes

Table C2. The average effect of daily maximum temperature on monthly sug-
ary drink volume purchased, with various location and time fixed effects. This
table shows results from regressing the main specification in Equation 1 via Poisson pseudo-
maximum likelihood (column 1), including county × month (column 2), state × month
(column 3), and household × year fixed effects (column 4). The reference maximum tem-
perature bin is (65-70)F. As a matter of space, we do not present the results for the bins
(55, 60]F, (60, 65]F, [70, 75)F, and [75, 80)F, but these bins are included in the regression.
Projection factors are used. Robust standard errors are clustered at the zip code level. F:
Fahrenheit. FE: fixed effects. HH: household. *** p < 0.01, ** p < 0.05, * p < 0.1.
Back to Section 4.1.
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(1) (2)

≤ 25F 0.0005 0.0005
(0.0009) (0.0011)

(25, 30]F -0.0007 -0.0007
(0.0011) (0.0015)

(30, 35]F 0.0014 0.0014
(0.0009) (0.0013)

(35, 40]F 0.0002 0.0002
(0.0008) (0.0005)

(40, 45]F -0.0001 -0.0001
(0.0007) (0.0010)

(45, 50]F 0.0005 0.0005
(0.0007) (0.0007)

(50, 55]F 0.0003 0.0003
(0.0007) (0.0009)

[80, 85)F 0.0018∗∗∗ 0.0018∗∗∗

(0.0006) (0.0004)
[85, 90)F 0.0025∗∗∗ 0.0025∗∗∗

(0.0006) (0.0005)
[90, 95)F 0.0029∗∗∗ 0.0029∗∗∗

(0.0007) (0.0005)
≥ 95F 0.0034∗∗∗ 0.0034∗∗∗

(0.0007) (0.0006)

N 5820876 5820876
pseudo R2 0.562 0.562
Weather controls Yes Yes
Time-varying HH controls Yes Yes
Zip code x month of year FE Yes Yes
Year x quarter of year FE Yes Yes
Household FE Yes Yes

Table C3. The average effect of daily maximum temperature on monthly sugary
drink volume purchased, with two-way standard error clustering. This table shows
results from regressing the main specification in Equation 1 (i.e., clustering at zip code
level) (column 1) and with two-way standard error clustering at zip code and month-of-the-
year level (column 2), via Poisson pseudo-maximum likelihood. The reference maximum
temperature bin is (65-70)F. As a matter of space, we do not present the results for the bins
(55, 60]F, (60, 65]F, [70, 75)F, and [75, 80)F, but these bins are included in the regression.
Projection factors are used. Robust standard errors are clustered at the zip code level (1)
and at the zip code and month-of-year level (2). F: Fahrenheit. FE: fixed effects. HH:
household. *** p < 0.01, ** p < 0.05, * p < 0.1.
Back to Section 4.1.
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D. Inter-temporal shifts
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Figure D1. The cumulative effect of daily maximum temperature below 30◦F and
above 90◦F on monthly soft drink volume, by soft drink type. This figure shows
results from regressing the specification in Equation 3 for days with a maximum temperature
(a) below ≤ 30◦F and (b) above ≥ 90◦F, by soft drink type, via Poisson pseudo-maximum
likelihood. Plot represents the cumulative effect

∑2
t=−1 β̂i,m−t. The reference maximum

temperature bin is (40-80)F. As a matter of space, we do not present the results for the
bins (30, 40]F and [70, 80)F, but these bins are included in the regression. Vertical segments
show the 95% confidence interval. Projection factors are used. Robust standard errors are
clustered at the zip code level. Cum.: cumulative. F: Fahrenheit.
Back to Section 4.2 or Section 4.4.3.
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Figure D2. The cumulative effect of daily maximum temperature above 90◦F on
monthly diet CSD and regular CSD volume purchased for households with diet
CSD representing at least 50% of total CSD purchases. This figure shows results
from regressing the specification in Equation 3 for days with a maximum temperature above
≥ 90◦F, via Poisson pseudo-maximum likelihood. Only households with a total diet CSD
volume purchased representing at least 50% of total CSD purchases (regular CSD + diet
CSD) over the sample period are kept. Plot represents the cumulative effect

∑2
t=−1 β̂i,m−t.

The reference maximum temperature bin is (40-80)F. As a matter of space, we do not present
the results for the bins ≤ 30F, (30, 40]F and [70, 80)F, but these bins are included in the
regression. Vertical segments show the 95% confidence interval. Projection factors are used.
Robust standard errors are clustered at the zip code level. F: Fahrenheit.
Back to Section 4.2.
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Sugar drinks Regular CSD Fruit juice/drink Diet CSD Bottled water

≥ 90F 0.000 0.002 0.001 0.056 0.000
≤ 30F 0.223 0.280 0.419 0.374 0.333

Table D1. Harvesting tests, p-values. This table shows p-value results from testing the
null hypothesis that

∑2
t=1 β̂i,m−t = −β̂i,m from Equation 3. Projection factors are used.

Robust standard errors are clustered at the zip code level. CSD: carbonated soft drink.
Back to Section 4.2.

Sugar drinks Regular CSD Fruit juice/drink Diet CSD Bottled water

≥ 90F 0.000 0.007 0.000 0.055 0.000
≤ 30F 0.235 0.260 0.879 0.296 0.006

Table D2. Anticipation tests, p-values. This table shows p-value results from testing the
null hypothesis that β̂i,m+1 = −β̂i,m from Equation 3. Projection factors are used. Robust
standard errors are clustered at the zip code level. CSD: carbonated soft drink.
Back to Section 4.2.
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E. Heterogeneity and potential modifiers
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Figure E1. The average effect of daily maximum temperature on monthly bot-
tled water volume purchased, by annual household income, area, intensity of
consumption, and climate region. This figure displays results from regressing the spec-
ification in Equation 1 interacting each temperature bin with two types of county areas
(urban, rural; source: US Census Bureau, 2010), three household annual income levels (be-
low USD 40K, between USD 40-100K, above USD 100K), three intensity of consumption
levels (based on terciles of yearly total volume per adult equivalent unit), and three climate
regions (based on terciles of average zip code maximum temperature over the period 1974-
2003), via Poisson pseudo-maximum likelihood. The reference maximum temperature bin is
(40-80)F. Projection factors are used. Vertical segments show the 95% confidence interval.
Robust standard errors are clustered at the zip code level. F: Fahrenheit. USD: U.S. dollars,
base 2015.
Back to Section 4.3.
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Air conditioning use

Midwest 0.438∗∗

(0.176)
South 0.957∗∗∗

(0.151)
West -0.639∗∗∗

(0.186)
Rural -0.287∗∗∗

(0.088)
HH size: 2-3 0.195∗∗∗

(0.031)
HH size: ≥ 4 0.239∗∗∗

(0.063)
HH income: USD 40-100K 0.297∗∗∗

(0.057)
HH income: ≥ USD 100K 0.472∗∗∗

(0.089)
HH head age: ≥ 55 0.116∗∗∗

(0.022)
HH race: Black -0.315∗∗∗

(0.075)
HH race: Other non-white -0.228∗∗∗

(0.066)

N 22150

Table E1. Predictors of air conditioning use. This table displays the correlation between
household demographic characteristics and air conditioning use using the U.S. Energy In-
formation Administration Residential Energy Consumption Survey (RECS) 2005, 2009, and
2015, through a probit regression. The dependent variable is air conditioning use. RECS
survey weights are used to represent the entire U.S. population. Robust standard errors are
clustered at the U.S. Census division level. HH: household. USD: U.S. dollar, base 2015.
*** p < 0.01, ** p < 0.05, * p < 0.1.
Back to Section 4.3.
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mean sd N

Outdoor employed member 0.209 0.002 5,834,433
Obese member 0.529 0.004 475,824
Children 0.351 0.002 5,834,433
AC use 0.816 0.002 5,834,433

Table E2. Prevalence of modifiers among the sample. Outdoor equals 1 for years in
which at least one household head has an outdoor occupation. Obese equals 1 for years in
which at least one adult household member is obese (based on a body mass index above
30 as estimated from self declared height and weight information, only provided for 2016-
2017). Children equals 1 for years in which at least one household member is a child.
AC use equals 1 for years in which the household used AC. Source for height and weight
information: NielsenIQ Annual Ailments, Health, and Wellness Survey. Source for AC
use data: U.S. Energy Information Administration Residential Energy Consumption Survey
2005, 2009, and 2015 matched on household demographics (see Table E1). The reference
maximum temperature bin is (40-80)F. Projection factors are used. Robust standard errors
are clustered at the zip code level. AC: air conditioning.
Back to Section 4.3.
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Outdoor Obese Children AC use

≤ 30F -0.0029∗∗ -0.0095 -0.0030∗∗ -0.0049
(0.0012) (0.0076) (0.0012) (0.0043)

≤ 30F× Mod -0.0012 0.0030 -0.0003 0.0018
(0.0014) (0.0059) (0.0012) (0.0044)

[30, 40)F -0.0007 -0.0008 -0.0000 0.0016
(0.0010) (0.0051) (0.0010) (0.0025)

[30, 40)F× Mod -0.0002 -0.0016 -0.0027∗∗ -0.0025
(0.0011) (0.0048) (0.0011) (0.0025)

(80, 90]F 0.0037∗∗∗ 0.0022 0.0039∗∗∗ 0.0034∗∗∗

(0.0005) (0.0024) (0.0005) (0.0009)
(80, 90]F× Mod 0.0008 -0.0011 -0.0004 0.0005

(0.0005) (0.0014) (0.0005) (0.0009)
≥ 90F 0.0063∗∗∗ 0.0035 0.0064∗∗∗ 0.0069∗∗∗

(0.0008) (0.0033) (0.0008) (0.0012)
≥ 90F× Mod 0.0002 0.0001 -0.0004 -0.0007

(0.0007) (0.0015) (0.0005) (0.0011)

N 5436272 348403 5436272 5436272
pseudo R2 0.568 0.724 0.569 0.568
Weather controls Yes Yes Yes Yes
Time-varying HH controls Yes Yes Yes Yes
Zip code x month of year FE Yes Yes Yes Yes
Year x quarter of year FE Yes Yes Yes Yes
Household FE Yes Yes Yes Yes

Table E3. Interaction effects between maximum temperature and potential mod-
ifiers of the effect on the monthly volume purchased of bottled water. This
table displays results from regressing the specification in Equation 4 estimated via Poisson
pseudo-maximum likelihood. Mod represents outdoor (column 1), obese (column 2), chil-
dren (column 3), and AC use (column 4). Outdoor equals 1 for years in which at least one
household head has an outdoor occupation. Obese equals 1 for years in which at least one
adult household member is obese (based on a body mass index above 30 as estimated from
self declared height and weight information, only provided for 2016-2017). Children equals
1 for years in which at least one household member is a child. AC use equals 1 for years in
which the household used AC. Source for height and weight information: NielsenIQ Annual
Ailments, Health, and Wellness Survey. Source for AC use data: U.S. Energy Information
Administration Residential Energy Consumption Survey 2005, 2009, and 2015 matched on
demographics (see Table E1). The reference maximum temperature bin is (40-80)F. Projec-
tion factors are used. Robust standard errors are clustered at the zip code level. AC: air
conditioning. FE: fixed effects. F: Fahrenheit. HH: household. *** p < 0.01, ** p < 0.05, *
p < 0.1.
Back to Section 4.3.
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F. Potential drivers
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Figure F1. Average monthly Fisher price index among sample stores, by soft
drink type, 2006-2019. Base: January 2006. CSD: carbonated soft drink. U.S. general
inflation over the period 2006-2019 (source: U.S. Bureau of Labor and Statistics): 29.6%.
Back to Section 4.4.3.
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Figure F2. The cumulative effect of daily maximum temperature on monthly retail
prices, by soft drink type. This figure shows results from regressing Equation 5, via
ordinary least squares, by soft drink type. Plot represents the cumulative effect

∑2
t=0 β̂i,m−t.

The reference maximum temperature bin is (40,80)F. Dependent variable: ln of Fisher price
index (base: January 2006). The coefficients are exponentiated and should be interpreted as
change ratios. Vertical segments show the 95% confidence interval. Robust standard errors
are clustered at the county level. CSD: carbonated soft drink. F: Fahrenheit.
Back to Section 4.4.3.
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Figure F3. Monthly distribution of day-on-day differences in maximum temper-
ature, 2004-2019. N = 5, 834, 433 household-month observations. Day-on-day differences
for temperature bin i are defined as ∆F = TMAXd−TMAXd−1 with TMAXd belonging to
bin i. * Only counting positive (negative) day-on-day differences for maximum temperature
above (below) the reference maximum temperature bin (40,80)F. F: Fahrenheit.
Back to Section 4.4.4.
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Figure F4. The average effect of daily maximum temperature on the monthly
volume purchased of sugary drink and bottled water, by day-on-day difference.
This table shows the results of the main specification in Equation 1 via Poisson pseudo-
maximum likelihood, duplicating each temperature bin by its occurrence following and not
following a day-on-day difference in maximum temperature (∆F ) of at least 6◦F. * Only
counting positive (negative) day-on-day differences for maximum temperature above (below)
the reference bin. The reference maximum temperature bin is (40,80)F. Projection factors
are used. Vertical segments show the 95% confidence interval. Robust standard errors are
clustered at the zip code level. F: Fahrenheit.
Back to Section 4.4.4.
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Figure F5. Sensitivity more stringent threshold: The average effect of day-on-day
differences in maximum temperature on sugary drink and bottled water volume
purchased. This table shows the results of the main specification in Equation 1 via Poisson
pseudo-maximum likelihood, duplicating each temperature bin by its occurrence following
and not following a day-on-day difference in maximum temperature (∆F ) of at least 9◦F.
* Only counting positive (negative) day-on-day differences for maximum temperature above
(below) the reference bin. The reference maximum temperature bin is (40,80)F. Projection
factors are used. Vertical segments show the 95% confidence interval. Robust standard
errors are clustered at the zip code level. F: Fahrenheit.
Back to Section 4.4.4.
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Figure F6. The average effect of daily maximum temperature on the monthly
volume purchased of sugary drink and bottled water, by precipitation. This
figure shows the results of the main specification in Equation 1 via Poisson pseudo-maximum
likelihood, duplicating each temperature bin by its occurrence with and without rain (0
mm). Precipitations are omitted as controls because of collinearity. The reference maximum
temperature bin is (40,80)F. Projection factors are used. Vertical segments show the 95%
confidence interval. Robust standard errors are clustered at the zip code level. F: Fahrenheit.
Back to Section 4.4.4.
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Any stores Convenience stores Other stores

≤ 30F -0.015∗∗∗ -0.007∗∗∗ -0.008∗∗∗

(0.002) (0.001) (0.002)
(30, 40]F -0.001 -0.001 0.000

(0.002) (0.001) (0.001)
[80, 90)F -0.004∗∗∗ -0.002∗∗ -0.002∗∗∗

(0.001) (0.001) (0.001)
≥ 90F -0.005∗∗∗ -0.002∗∗ -0.003∗∗∗

(0.002) (0.001) (0.001)

N 5834298 5834298 5834298
adj. R2 0.644 0.637 0.639
Weather controls Yes Yes Yes
Time-varying HH controls Yes Yes Yes
Zip code x month of year FE Yes Yes Yes
Year x quarter of year FE Yes Yes Yes
Household FE Yes Yes Yes
Mean of Y (# trips) 9.12 3.44 5.68

Table F1. The average effect of daily maximum temperature on the monthly
occurrence of shopping trips, by store type. This table shows the results of the main
specification in Equation 1, via ordinary least squares, replacing the dependent variable by
the monthly number of trips to each store type. The reference maximum temperature bin is
(40,80)F. The dependent variable is in level and coefficents are to be interpreted as absolute
change. Convenience stores also include bodegas, discount stores, liquor stores, service
stations, small grocery stores, and tobacco stores. Projection factors are used. Robust
standard errors are clustered at the zip code level. F: Fahrenheit. FE: fixed effects. HH:
household. *** p < 0.01, ** p < 0.05, * p < 0.1.
Back to Section 4.4.1.
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Sugary drink
Convenience

Sugary drink
Other

Diet CSD
Convenience

Diet CSD
Other

Bottled water
Convenience

Bottled water
Other

≤ 30F 0.0020 -0.0009 0.0030∗ -0.0028∗∗∗ -0.0052∗∗ -0.0025∗

(0.0012) (0.0007) (0.0018) (0.0011) (0.0023) (0.0014)
(30, 40]F 0.0030∗∗∗ -0.0006 -0.0018 -0.0015∗ -0.0028 0.0002

(0.0010) (0.0006) (0.0015) (0.0009) (0.0020) (0.0011)
[80, 90)F 0.0021∗∗∗ 0.0020∗∗∗ -0.0003 0.0016∗∗∗ 0.0035∗∗∗ 0.0041∗∗∗

(0.0006) (0.0004) (0.0008) (0.0006) (0.0010) (0.0006)
≥ 90F 0.0032∗∗∗ 0.0027∗∗∗ 0.0026∗∗ 0.0017∗∗ 0.0056∗∗∗ 0.0066∗∗∗

(0.0008) (0.0005) (0.0012) (0.0008) (0.0014) (0.0009)

N 5302780 5758347 4034957 4930057 4256325 5108977
pseudo R2 0.588 0.536 0.646 0.652 0.586 0.551
Weather controls Yes Yes Yes Yes Yes Yes
Time-varying HH controls Yes Yes Yes Yes Yes Yes
Zip code x month of year FE Yes Yes Yes Yes Yes Yes
Year x quarter of year FE Yes Yes Yes Yes Yes Yes
Household FE Yes Yes Yes Yes Yes Yes

Table F2. The average effect of daily maximum temperature on monthly volume
purchased of soft drink, by soft drink type and store type. This table shows the
results of the main specification in Equation 1 by store type estimated via Poisson pseudo-
maximum likelihood. The reference maximum temperature bin is (40,80)F. Convenience
stores also include bodegas, discount stores, liquor stores, service stations, small grocery
stores, and tobacco stores. Robust standard errors are clustered at the zip code level. CSD:
carbonated soft drink. F: Fahrenheit. FE: fixed effects. HH: household. *** p < 0.01, **
p < 0.05, * p < 0.1.
Back to Section 4.4.1.
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Sugary drink
Convenience

Sugary drink
Other

≤ 30F 0.0022∗ -0.0010
(0.0013) (0.0007)

≤ 30F× Rural -0.0010 0.0006
(0.0023) (0.0020)

(30, 40]F 0.0028∗∗∗ -0.0006
(0.0010) (0.0006)

[30, 40)F× Rural 0.0013 0.0010
(0.0022) (0.0016)

[80, 90)F 0.0021∗∗∗ 0.0021∗∗∗

(0.0006) (0.0004)
(80, 90]F× Rural 0.0000 -0.0006

(0.0014) (0.0014)
≥ 90F 0.0031∗∗∗ 0.0030∗∗∗

(0.0008) (0.0005)
≥ 90F× Rural 0.0007 -0.0032∗

(0.0017) (0.0018)

N 5302780 5758347
pseudo R2 0.588 0.536
Weather controls Yes Yes
Time-varying HH controls Yes Yes
Zip code x month of year FE Yes Yes
Year x quarter of year FE Yes Yes
Household FE Yes Yes

Table F3. The average effect of daily maximum temperature on monthly volume
purchased of sugary drinks, by store type and area. This table shows the results of
the main specification in Equation 1 by store type estimated via Poisson pseudo-maximum
likelihood. The reference maximum temperature bin is (40,80)F. Convenience stores also
include bodegas, discount stores, liquor stores, service stations, small grocery stores, and
tobacco stores. Robust standard errors are clustered at the zip code level. F: Fahrenheit.
FE: fixed effects. HH: household. *** p < 0.01, ** p < 0.05, * p < 0.1.
Back to Section 4.4.1.
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Sugary drink Diet CSD Bottled water

≤ 30F -0.0001 -0.0001 -0.0061
(0.0021) (0.0033) (0.0042)

≤ 30F× Est. density 0.0000 -0.0006 0.0014
(0.0010) (0.0015) (0.0021)

(30, 40]F 0.0008 -0.0036 -0.0025
(0.0017) (0.0025) (0.0037)

(30, 40]F× Est. density -0.0002 0.0010 0.0009
(0.0008) (0.0012) (0.0018)

[80, 90)F 0.0050∗∗∗ 0.0033 0.0100∗∗∗

(0.0012) (0.0022) (0.0022)
[80, 90)F× Est. density -0.0016∗∗∗ -0.0013 -0.0033∗∗∗

(0.0006) (0.0011) (0.0011)
≥ 90F 0.0033∗∗ 0.0013 0.0107∗∗∗

(0.0015) (0.0024) (0.0026)
≥ 90F× Est. density -0.0002 0.0005 -0.0023∗

(0.0008) (0.0012) (0.0014)

N 5819204 5233030 5434654
pseudo R2 0.562 0.692 0.568
Weather controls Yes Yes Yes
Time-varying HH controls Yes Yes Yes
Zip code x month of year FE Yes Yes Yes
Year x quarter of year FE Yes Yes Yes
Household FE Yes Yes Yes

Table F4. Interaction effects between daily maximum temperatures and the den-
sity of food and drink establishments on the monthly volume purchased of soft
drink, by soft drink type. Establishment density built using the number of North Amer-
ican Industry Classification System (NAICS) code 722 ‘Food services and drinking places’
establishments divided by county-level population data, using yearly data from the U.S. Cen-
sus Bureau’s County Business Patterns and the National Cancer Institute (establishment per
1,000 inhabitants). The establishment density term is not included in the regression by its
own given that it is constant for each county and thus collinear with household fixed effects.
Regression via Poisson pseudo-maximum likelihood. The reference maximum temperature
bin is (40,80)F. Projection factors are used. Robust standard errors are clustered at the zip
code level. CSD: carbonated soft drink. F: Fahrenheit. FE: fixed effects. HH: household.
*** p < 0.01, ** p < 0.05, * p < 0.1.
Back to Section 4.4.2.
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Regular CSD Fruit juice/drink Diet CSD Bottled water

Stores 15,353 12,155 13,219 14,118
Counties 158 161 150 156
States 49 49 49 49

Observations 2,579,304 2,042,040 2,220,792 2,371,824

Table F5. Final sample size, retail scanner dataset, 2006-2019. Sample period
January 2006 to December 2019. The 49 States correspond to the 48 States in the contiguous
U.S. and the District of Columbia. CSD: carbonated soft drink.
Back to Section 4.4.3.
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G. Climate projections
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Figure G1. Distribution of annual daily maximum temperature, for 2004-2019 and
for 2080-2099 under RCP 4.5 and RCP 8.5. N = 2, 463 counties. The period 2004-2019
is estimated using the U.S. NOAA Global Historical Climatology Network meteorological
daily information. The predicted maximum temperature data for the period 2080-2099 is
estimated as a probability-weighted average across the multi-model ensemble developed by
Rasmussen et al. (2016). We use two greenhouse gas emission scenarios: RCP 4.5 and RCP
8.5. RCP: Representative concentration pathways. C: Celsius.
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Figure G2. Average relative change in the volume purchased of bottled water from
climate projections by climate region, with and without accounting for histori-
cal exposure and adaptation, from 2004-2019 to 2080-2099. This figure shows the
relative effect of changes in maximum temperatures on bottled water volume purchased in
2080-2099 relative to 2004-2019 derived from Equation 7 (∆V̂ NH,NA; no historical exposure,
no adaptation), Equation 8 (∆V̂ H,NA; historical exposure, no adaptation), and Equation 9
(∆V̂ H,A; historical exposure, adaptation). Population-weighted average across sample coun-
ties (source: National Institutes of Health, National Cancer Institute, U.S. county population
data, 2019). Results are shown for the national aggregate and for three climate regions un-
der two greenhouse gas emission scenarios, RCP 4.5 and RCP 8.5. The hot, mild, and
cold regions include sample counties within three terciles of average maximum temperature
over the period 1974-2003. Maximum temperature predictions are derived from county-level
probability-weighted averages across the multi-model ensemble from Rasmussen et al. (2016).
Vertical segments show the 95% confidence intervals.
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Figure G3. Sensitivity using the median across climate multi-model ensemble:
Average relative change in the volume purchased of sugary drink from climate
projections by climate region, with and without accounting for historical expo-
sure and adaptation, from 2004-2019 to 2080-2099. This figure shows the relative
effect of changes in maximum temperatures on sugary drink volume purchased in 2080-
2099 relative to 2004-2019 derived from Equation 7 (∆V̂ NH,NA; no historical exposure, no
adaptation), Equation 8 (∆V̂ H,NA; historical exposure, no adaptation), and Equation 9
(∆V̂ H,A; historical exposure, adaptation). Population-weighted average across sample coun-
ties (source: National Institutes of Health, National Cancer Institute, U.S. county population
data, 2019). Results are shown for the national aggregate and for three climate regions un-
der two greenhouse gas emission scenarios, RCP 4.5 and RCP 8.5. The hot, mild, and cold
regions include sample counties within three terciles of average maximum temperature over
the period 1974-2003. This figure represents a sensitivity analysis of Figure 5 in which we use
maximum temperature predictions derived from the median across the county-level multi-
model ensemble from Rasmussen et al. (2016) instead of the probability-weighted average
across the models ensemble. Vertical segments show the 95% confidence intervals.
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Figure G4. Sensitivity accounting for projected precipitations: Average relative
change in the volume purchased of sugary drink from climate projections by
climate region, with and without accounting for historical exposure and adap-
tation, from 2004-2019 to 2080-2099. This figure shows the relative effect of changes
in maximum temperatures and precipitations on sugary drink volume purchased in 2080-
2099 relative to 2004-2019 derived from Equation 7 (∆V̂ NH,NA; no historical exposure, no
adaptation), Equation 8 (∆V̂ H,NA; historical exposure, no adaptation), and Equation 9
(∆V̂ H,A; historical exposure, adaptation). Population-weighted average across sample coun-
ties (source: National Institutes of Health, National Cancer Institute, U.S. county population
data, 2019). Results are shown for the national aggregate and for three climate regions un-
der two greenhouse gas emission scenarios, RCP 4.5 and RCP 8.5. The hot, mild, and
cold regions include sample counties within three terciles of average maximum temperature
over the period 1974-2003. Maximum temperature predictions are derived from county-level
probability-weighted averages across the multi-model ensemble from Rasmussen et al. (2016).
This figure represents a sensitivity analysis of Figure 5 in which we consider changes in both
maximum temperatures and precipitations instead of considering only changes in maximum
temperatures. Vertical segments show the 95% confidence intervals.
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Figure G5. Sensitivity using a richer model: Average relative change in the vol-
ume purchased of sugary drink from climate projections by climate region, with
and without accounting for historical exposure and adaptation, from 2004-2019
to 2080-2099. This figure shows the relative effect of changes in maximum temperatures on
sugary drink volume purchased in 2080-2099 relative to 2004-2019 derived from Equation 7
(∆V̂ NH,NA; no historical exposure, no adaptation), Equation 8 (∆V̂ H,NA; historical expo-
sure, no adaptation), and Equation 9 (∆V̂ H,A; historical exposure, adaptation). Population-
weighted average across sample counties (source: National Institutes of Health, National
Cancer Institute, U.S. county population data, 2019). Results are shown for the national ag-
gregate and for three climate regions under two greenhouse gas emission scenarios, RCP 4.5
and RCP 8.5. The hot, mild, and cold regions include sample counties within three terciles
of average maximum temperature over the period 1974-2003. Maximum temperature pre-
dictions are derived from county-level probability-weighted averages across the multi-model
ensemble from Rasmussen et al. (2016). This figure represents a sensitivity analysis of Fig-
ure 5 in which we use purchase response estimates from a richer and more flexible model
(Table G2). Vertical segments show the 95% confidence intervals.
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Sugary drinks Bottled water

(1) (2) (3) (4)

≤ −1C -0.0001 -0.0016 -0.0030∗∗ -0.0018
(0.0006) (0.0011) (0.0012) (0.0020)

≤ −1C× Prz(≤ −1)hist 0.0183∗ -0.0095
(0.0094) (0.0189)

(−1, 5]C 0.0003 -0.0009 -0.0002 -0.0054∗∗

(0.0005) (0.0012) (0.0009) (0.0022)
(−1, 5]C× Prz((−1, 5])hist 0.0123 0.0437∗∗∗

(0.0095) (0.0170)
[26, 32)C 0.0018∗∗∗ 0.0013∗∗ 0.0039∗∗∗ 0.0038∗∗∗

(0.0003) (0.0006) (0.0005) (0.0011)
[26, 32)C× Prz([26, 32))

hist 0.0021 0.0000
(0.0020) (0.0037)

≥ 32C 0.0029∗∗∗ 0.0029∗∗∗ 0.0070∗∗∗ 0.0090∗∗∗

(0.0004) (0.0006) (0.0008) (0.0011)
≥ 32C× Prz(≥ 32)hist 0.0004 -0.0131∗∗

(0.0032) (0.0052)

N 5820876 5820876 5436272 5436272
pseudo R2 0.562 0.562 0.568 0.568
Weather controls Yes Yes Yes Yes
Time-varying HH controls Yes Yes Yes Yes
Zip code x month of year FE Yes Yes Yes Yes
Year x quarter of year FE Yes Yes Yes Yes
Household FE Yes Yes Yes Yes

Table G1. Purchase response estimates for climate projections, sugary drink and
bottled water. This table shows results from regressing Equation 1 (columns 1 and 3)
and Equation 6 (columns 2 and 4), via Poisson pseudo-maximum likelihood. The share of
historical observations on which Ti days occur (Prz(Ti)

hist) remains fixed over time for any
given zip code z for all i and is estimated based on weather data from the U.S. NOAA Global
Historical Climatology Network for 1974-2003. The reference maximum temperature bin is
(5-26)C. Projection factors are used. Robust standard errors are clustered at the zip code
level. C: Celsius. FE: fixed effects. HH: household. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Sugary drinks

(1) (2)

≤ −4C 0.0009 0.0001
(0.0009) (0.0013)

≤ −4C× Prz(≤ −4)hist 0.0181
(0.0160)

(−4,−1]C 0.0001 -0.0031
(0.0010) (0.0024)

(−4,−1]C× Prz((−4,−1])hist 0.0916∗

(0.0551)
(−1, 2]C 0.0018∗∗ 0.0030

(0.0008) (0.0021)
(−1, 2]C× Prz((−1, 2])hist -0.0144

(0.0318)
(2, 5]C 0.0005 -0.0028

(0.0007) (0.0021)
(2, 5]C× Prz((2, 5])

hist 0.0535∗

(0.0294)
(5, 8]C 0.0004 -0.0027

(0.0007) (0.0023)
(5, 8]C× Prz((5, 8])

hist 0.0465
(0.0321)

(8, 11]C 0.0009 0.0016
(0.0006) (0.0014)

(8, 11]C× Prz((8, 11])
hist -0.0087

(0.0167)
[26, 29)C 0.0019∗∗∗ 0.0012

(0.0005) (0.0010)
[26, 29)C× Prz([26, 29))

hist 0.0056
(0.0066)

[29, 32)C 0.0030∗∗∗ 0.0025∗∗∗

(0.0006) (0.0008)
[29, 32)C× Prz([29, 32))

hist 0.0049
(0.0047)

[32, 35)C 0.0033∗∗∗ 0.0021∗∗

(0.0006) (0.0009)
[32, 35)C× Prz([32, 35))

hist 0.0111∗

(0.0058)
≥ 35C 0.0039∗∗∗ 0.0044∗∗∗

(0.0007) (0.0008)
≥ 35C× Prz(≥ 35)hist -0.0036

(0.0056)

N 5820876 5820876
pseudo R2 0.562 0.562
Weather controls Yes Yes
Time-varying HH controls Yes Yes
Zip code x month of year FE Yes Yes
Year x quarter of year FE Yes Yes
Household FE Yes Yes

Table G2. Sensitivity using a richer model: Purchase response estimates for
climate projections, sugary drink. This table shows results from regressing Equation 1
(column 1) and Equation 6 (column 2), via Poisson pseudo-maximum likelihood. The share
of historical observations on which Ti days occur (Prz(Ti)

hist) remains fixed over time for
any given zip code z for all i and is estimated based on weather data from the U.S. NOAA
Global Historical Climatology Network for 1974-2003. The reference maximum temperature
bin is (17-20)C. As a matter of space, we do not present the results for the bins (11, 14]C,
(14, 17]C, [20, 23)C, and [23, 26)C, but these bins are included in the regression. Projection
factors are used. Robust standard errors are clustered at the zip code level. C: Celsius. FE:
fixed effects. HH: household. *** p < 0.01, ** p < 0.05, * p < 0.1.
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